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EXECUTIVE SUMMARY 

As the transportation system in Utah becomes more diverse with new modes such as on-

demand taxis, car sharing, bikes / scooters, and potential autonomous vehicles, there is a growing 

need to understand mobility patterns of individuals with travel-limiting disabilities, including the 

use of a wheelchair. Previous research has shown that disabilities have a negative effect on travel 

behavior in a variety of contexts (trip length, mode, etc.), but in considering the use of a 

wheelchair, no study has quantified the effect of wheelchair use in the context of a travel model. 

This report contains two primary contributions to the research surrounding mobility for 

individuals using wheelchairs. The first is an understanding of the effect of wheelchair use on 

one’s choice of daily activity pattern. These patterns were evaluated using both a calibrated 

activity-based model of Salt Lake City and a rigorous study of choice behavior using data from 

the 2017 NHTS. The second contribution was an application of this understanding in modeling a 

simulation of wheelchair-accessible vehicles. 

The study shows that use of a wheelchair places significant constraints on an individual’s 

daily activity pattern choice behavior. Consequently, we recommend that UDOT apply this 

understanding to planning models in the state to better understand the equity implications of its 

projects. This report also provides a foundation to further research on the effect of wheelchair 

use in considering other travel activity models such as mode choice or trip length; in this way the 

study methodology provides an illustration of more behaviorally sensitive travel models were 

UDOT or its partners to consider adopting such models for their planning activities  The 

simulation results presented in this report do not show a diminishing marginal benefit for 

additional wheelchair-accessible vehicles; this could imply a large currently unmet demand for 

such a service that should be investigated. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement  

In December 2018, the Utah Transit Authority (UTA) released a request for proposals 

(RFP) to offer on-demand transportation services for wheelchair-using passengers in Salt Lake 

County (UTA, 2018). The RFP described a 6-month pilot study, wherein individuals with 

wheelchairs would be able to request on-demand transportation services from a major 

transportation network company (TNC). The TNC would serve the requests using a fleet of 

wheelchair-accessible vehicles (WAV) provided under agreement with UTA and drivers whom 

UTA would train to operate the special equipment and interface with wheelchair-using 

passengers.   

In developing this RFP, UTA encountered a great deal of uncertainty related to the design 

and operation of this system. How many people will use it? How many vehicles would be 

necessary to offer a minimal level of service? What should be the geographic boundaries of this 

service? No existing tool could provide any coherent attempt at answering these questions. 

In January 2019, UTA partnered with Lyft to deploy the WAVs. However, after months 

of negotiation and due to complications with data sharing and concerns with liability, the pilot 

was never launched. This does not mean that the questions are invalid, and transit agencies 

continue to explore possibilities for improved mobility for users with wheelchairs and seek more 

clarity related to the design and operation of such systems. 

1.2 Objectives 

This research, as inspired by the questions and uncertainty surrounding the UTA WAV 

pilot project, includes two primary objectives and contributions. The first objective is to 

understand the effect that an individual’s wheelchair use has on their choice of daily activity 

pattern (DAP), all else equal; the second objective is to use this understanding to model a WAV 

system and evaluate its performance. These objectives, along with the steps taken necessary to 

reach the contributions mentioned, are outlined in Figure 1-1. The individual pieces of Figure 1-1 

are explained in the outline in Section 1.3. 
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Two central pieces of software were used to accomplish the objectives of the research. 

ActivitySim (ActivitySim, 2021) generates DAP for a synthetic population based on calibrated 

choice models and travel-time measurements. BEAM (Behavior, Energy, Autonomy, Mobility; 

Bae et al., 2019) simulates a population, also called agents, accomplishing their DAP given a 

description of a region’s transportation services; BEAM also allows agents to adapt their DAP to 

best utilize new transportation services. Both ActivitySim and BEAM are open-source software 

platforms with wide and growing user bases; details of these software and their specific inputs 

will be discussed in the report as appropriate. 

1.3 Outline of Report 

Chapter 1 introduces and outlines the objectives and organization of the report, followed 

by a Literature Review in Chapter 2 discussing first, the literature and existing research 

surrounding the travel behavior of individuals with disabilities and second, existing simulations 

of ride-hail scenarios using multiagent simulation tools. Chapter 2 presents the need for further 

understanding of travel behavior patterns of individuals with wheelchairs and that this specific 

population has not been effectively modeled in traditional simulation research, especially with 

regard to WAVs. 

Chapter 3 introduces ActivitySim, the activity-based model chosen to generate DAP for 

the Greater Salt Lake Area by describing its input setup, validation, and calibration. Chapter 3 

introduces the synthetic population, a data set containing persons and attributes that represent the 

Salt Lake Area, and a set of travel model network skims; these network skims inform the model 

on travel times and cost. This chapter also describes the validation and calibration of ActivitySim 

to the Salt Lake Area, using target values from the Wasatch Front Regional Council / 

Mountainland Association of Governments (WFRC / MAG) travel demand model.  The primary 

components of this chapter are represented in green in Figure 1-1. 

Chapter 4 contains the first primary contribution of the research: an understanding of the 

effect that wheelchair use has on the choice of DAP; this process is represented by the red 

elements in Figure 1-1, and the contribution is represented in grey. To estimate this effect, we 

first identified wheelchair users from the 2017 National Household Travel Survey (NHTS; 
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FHWA, 2017), and estimated their DAP choice behavior using multinomial logit models. With 

these estimated choice coefficients, we simulate their behavior in the calibrated ActivitySim 

scenario and compare the results to their behavior from a base scenario. The findings show that 

wheelchair users are more likely to choose a home DAP – all else equal – and will be explained 

in further detail in Chapter 4. 

Chapter 5 is represented by the blue in Figure 1-1 and includes the second primary 

contribution of this research: a measure of the performance of a WAV system, using the 

understanding from Chapter 4. Chapter 5 describes the setup and use of the microsimulation tool 

BEAM and shows how scenarios were built to compare the operation and utilization of WAVs in 

an on-demand ride-hailing network. 

Finally, Chapter 6 concludes the report by restating the contributions of this research, 

explaining the limitations, and proposing next steps for future research. 

 

Figure 1-1 Overview of research and organization of report. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Overview 

The objectives of this research are two-fold: First, the research aims to understand the 

effect of wheelchair use on choice of DAP; the second objective is to use this understanding of 

behavior to model a WAV system. These objectives necessitate a review of two different sets of 

literature that have not to this point intersected in meaningful ways. The first literature set 

observes how the daily travel and activity patterns of wheelchair users and other individuals with 

ambulatory limitations differ from the patterns of the population typically considered by travel 

demand forecasting models. The second literature set considers attempts to forecast the adoption 

and use of on-demand mobility services in any population segment. This chapter presents a 

review of academic and professional works on each of these topics in succeeding sections. The 

chapter ends with a consideration of existing mobility services for users with disabilities, and a 

discussion of recent regulatory and legislative actions relevant to these mobility services.  

2.2 Mobility Patterns of Users with Disabilities 

According to data in the NHTS (FHWA, 2017), the share of people in the United States 

with travel-limiting disabilities increased from 8.5 percent of the population in 2001 to 10.2 

percent in 2009 (Brumbaugh, 2018). In the 2017 NHTS, this share returned to 8.5 percent by our 

own calculations. As of 2018, an estimated 13.4 million Americans age 18 to 64 have travel-

limiting disabilities, accounting for slightly more than half of people with any disabilities 

(Brumbaugh, 2018). Given that difficulties in travel appear to result in decreased employment 

opportunities (Rosenbloom, 2007) and may negatively influence general quality of life, 

understanding the effects of limitations on travel is an important policy and planning objective. 

Mobility for users with disabilities as a general topic has been studied in regards to 

accessible transportation (Curl et al., 2011; Darcy & Burke, 2018; Jonnalagedda et al., 2014), 

mobility for the elderly (Ball et al., 1998; Li & Tilahun, 2017; Rosenbloom, 2001), tourism 

travel and disabilities (Burnett & Baker, 2001; Darcy, 2010), and Dial-a-Ride service 

optimization (Fu, 2002; Kurauchi et al., 2007). While these topics provide valuable background 
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on the general transportation of individuals with disabilities, the focus of our analysis is 

primarily the daily activity and travel patterns of users with disabilities such as the purpose and 

frequency of trips and the modes used. Rosenbloom (2007) provides an overview on the subject 

of transportation patterns and problems of people with disabilities in Appendix G of the book 

The Future of Disability in America. This literature review covers information and research on 

overall travel patterns including mode, frequency, and purpose. It also included topics such as 

driving for the aging community (ECMT, 1999; Gagliardi et al., 2005; Hu & Reuscher, 2004; 

OECD, 2001; Rosenbloom & Stähl, 2003), public agencies and their compliance to the 

Americans with Disabilities Act (ADA), paratransit and buses (Thole & Harvey, 2005), and the 

pedestrian environment (Kihl et al., 2005; Kocera et al., 2005). The literature of this research 

project will describe findings related to the purpose and frequency of trips and the mode choice 

of trips. 

2.2.1 Trip Purpose and Tour Frequency 

Disability can have a major effect on the frequency of trips made by an individual. 

Sweeney (2004) compared groups by number of times individuals left the house per week and by 

private motor vehicle usage. They found that the elderly with disabilities leave their home less 

often than both of the younger age groups (4.0 days per week for 65+, 5.1 days per week for 25-

64, and 5.6 days per week for <25). The study shows that people with disabilities traveled less 

and also reported more mobility problems than those without disabilities. There were individuals 

that were unable or unwilling to leave their houses because their disabilities were so severe. 

According to Sweeney, almost 2 million individuals with disabilities were homebound—this 

includes 9.0 percent of those ages 65 and over. In the same study, two-thirds of individuals with 

disabilities under 65 left their homes daily. 

Another study (Beyene et al., 2009) shows that driving status does not affect the mobility 

out of the home for users with disabilities. In a survey of 80 subjects in New Delhi, India, the 

authors present community mobility trends by driving status among people with disabilities and 

senior citizens. Their findings show that driving status does not impact mobility out of the home. 

They also found that individuals with a higher level of education may be associated with higher 
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frequency of leaving the home. Some of these findings may be context-dependent and may not 

apply to the North American situation. 

The disability of an individual can affect one’s trip purpose. Schmöcker et al. (2005) 

estimated trip generation using data from the 2001 London Area Travel Survey. The authors 

found that as individuals become older and disabilities interfere, trip-making decreases. 

Schmöcker et al. also saw that among groups of young disabled, younger elderly, and older 

elderly people, retired individuals initially made the most trips. Ermagun et al. (2016) also 

elaborates on patterns of trip purpose of disabled persons along with the way they are 

accompanied to those activities. In this study, they developed models to measure the dependency 

of individuals with disabilities on others for transportation. They found that when making a 

healthcare trip, those with disabilities were more dependent on an escort. 

Healthcare activities are a common destination for users with disabilities and they often 

affect the mode and frequency of travel for individuals. Sweeney (2004) shows that auto use for 

example, often as the driver, was even higher for medical trips among all travelers with 

disabilities than for the general population. This study found that among those with disabilities 

ages 25 to 64, almost 9 out of 10 travelers reported using a personal vehicle to travel to the 

doctor, whether as the driver or the passenger. Less than 2.0 percent reported using ADA or 

other specialized paratransit to travel to a doctor, and less than 4.0 percent took a public bus. 

2.2.2 Mode Choice 

Americans with disabilities have been shown to rely heavily on private vehicles as 

drivers or passengers (Rosenbloom, 2001; Sweeney, 2004). Sweeney (2004) examined the travel 

patterns of older Americans with disabilities and compared these patterns to older Americans 

without disabilities and younger Americans with disabilities. She compared local travel to long- 

distance travel and also compared mode choice distribution. Sweeney used the responses from 

the Bureau of Transportation Statistics’ Transportation Availability and Use Survey (USDOT, 

2003), where 5,019 interviews were completed, and 2,321 respondents had disabilities (survey 

weights were developed to reduce bias). The severity of each disability varies and even more so 

as age increases. The results show that the elderly, both abled and disabled, rely on the private 

vehicle as a primary mode for both local and long-distance travel. Those with disabilities tend to 
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ride as passengers instead of as drivers, and a small percentage of the elderly disabled used 

alternate modes (4.0 percent took a bus and 2.0 percent took paratransit) while about one-third 

walked. Rosenbloom (2007) writes that nondrivers with disabilities were remarkably reliant on 

the car—and even more so if taxi use is included. Over 86.0 percent of nondrivers were 

passengers in a car, 16.0 percent rode in a type of carpool, and almost 22.0 percent used a regular 

taxi during the previous month. 

Nearly 15 years later, Bascom & Christensen (2017) compare findings from the 2003 

Bureau of Transportation Statistics (BTS) national survey with their own survey of 193 

respondents on private vehicle usage. They reported that 32.9 percent of individuals with 

disabilities utilize a private vehicle, which is considerably less than the national rate reported by 

the BTS national survey at 61.0 percent. They also show that of the 76.6 percent of respondents 

with a licensed driver in the household, 85.3 percent had not driven a vehicle within the past 

month primarily due to their disability. The Bascom & Christensen study was not a study of 

observed behavior, but rather a stated-preference survey of how the subjects would most likely 

behave. For drivers, Rosenbloom (2007) found that persons with disabilities were more likely to 

limit their driving in unideal scenarios such as bad weather, busy roads/intersections, nighttime, 

and peak hours, and they would avoid driving long distances and on unfamiliar roads. Her 

review also shows that while the car is primarily used, its use is not correlated with severity of 

the disability, and that some individuals have disabilities so severe that they cannot walk, yet 

they can drive. Others have disabilities that even limit their mobility within the home, in which 

case transportation is only a secondary issue. 

Individuals with physical disabilities have reported difficulties using many transportation 

systems (Bascom & Christensen, 2017). Often modes of transport are difficult to access or 

unavailable altogether. According to the Rosenbloom (2007) review of a 1994 supplement to the 

National Health Interview Survey (NHIS), roughly a third of the respondents reported that there 

was no public transportation available in their area. Even among the majority who reported to 

have transit, most did not use it—and health/disability was not the reason for non-use. 

Rosenbloom reports that more than three-fourths who had transit in the area did not use it during 

the last 12 months and less than 10.0 percent reported using bus or subway in the last week. 

Where there were specialty services such as paratransit available, only 10.0 percent reported 
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using the service at all during the last 12 months. Respondents reported to be twice as likely to 

pay full price for a regular taxi, according to Rosenbloom (2007). Brumbaugh (2018) reported 

that less than 3.0 percent of people with disabilities use paratransit, while 4.6 percent of people 

with disabilities report using ride-hailing services at least once in the last 30 days. In contrast and 

from the NHIS analyzed by Rosenbloom (2007) nearly 10 years earlier, less than 13.0 percent of 

nondrivers used ADA paratransit services and under 7.0 percent used other community 

paratransit services in that month. Bascom & Christensen (2017) reported results showing that 

the number of participants who used public transportation was triple that reported in the previous 

NHIS study (Rosenbloom, 2007), and the number of respondents who indicated they made use of 

paratransit as well as those who indicated riding with others were both greater than what was 

represented in the NHIS study. Note that these contradictions may be due to groups sampled in 

each study. People with disabilities are more reliant on for-hire services, in particular taxicabs, 

than non-disabled persons. While non-disabled people make, on average, 4.1 for-hire trips 

annually, people with disabilities make twice as many trips (Schaller, 2018). According to this 

study, people with disabilities are also more reliant on taxicabs than the general population. It 

also shows that people with disabilities take 5.9 taxi trips annually, twice their use of TNCs (2.3 

trips per year). 

Mode choice for users with disabilities can be influenced by a number of factors. Bascom 

& Christensen (2017) reported that participants’ social networks effect their transportation mode 

choices, and that socializing with family was correlated with transportation mode choices in that 

family helps meet transportation needs for socializing. They also found that income level and 

disability type also affect an individual's transportation mode choices, and that individuals with 

physical disabilities relied on public transportation more than those with other disability types. 

Of individuals who used public transportation, those with disabilities most often earned 

significantly lower incomes than those who were able to drive personal vehicles, by about 

$10,000 annually (Bascom & Christensen, 2017). In a poll summarized by Rosenbloom (2007), 

they “found that almost two-thirds of all the people with disabilities who reported major 

transportation problems had annual incomes below $35,000” (p. 521). For those with higher 

incomes, there were fewer transportation problems. 
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2.2.3 Mobility Patterns for Users with Wheelchairs 

Users with wheelchairs face additional challenges in transportation compared with the 

general population of individuals with disabilities. Velho et al. (2016) found that users with 

wheelchairs face two categories of barriers, physical and attitudinal. Wheelchair users who use 

public transport in London discuss a variety of physical barriers encountered while traveling, 

such as the layout of the interior of the bus and broken elevators. All 27 wheelchair-using 

interviewees in the Velho et al. study discussed barriers of this nature, with no exceptions. 

Responses range from malfunction of ramps and elevators to sounds of caution (when deploying 

ramps) as sounds of shame.  

In a study on accessibility for disabled individuals, Van Roosmalen et al. (2010), showed 

that solutions have been improving over the years. They found that wheelchair lifts have been 

used for more than 30 years and have drastically changed the mobility of individuals who have 

disabilities, allowing wheelchair users to be independent and mobile. Their findings show that 

mobility, including the ability to get out and about, interact with the community, and be 

employed are impactful on a person’s well-being.  

It is important to note a wide variance in the results; this variance could come from a 

range of factors including modal availability by geographic region, difference in years from 

ADA, vehicle availability, or possession of a driver’s license in the household. While some 

studies account for some or all of these variables, severity of disability is not quantified in any of 

these studies. While severity is considered by some of the mentioned researchers, it could be a 

factor in the variance of conclusions observed in this review of the literature. This is just an 

example that supports the observation that without a regularized attempt to observe the travel 

behavior of individuals with disabilities, ad-hoc studies on widely divergent populations will 

result in a variety of conclusions. 

2.3 Forecasting On-Demand Services 

While the research of this project is focused on understanding the travel behavior of 

individuals with wheelchairs, it also aims to lay a framework to model and simulate their 

behavior in an on-demand ride-hail scenario. The literature mentioned to this point is helpful to 
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the research of this project, as it acts as a starting point and direction to eventually develop 

estimation models to simulate persons with disabilities. Now considering research regarding 

these simulations of general populations in micromobility scenarios, many studies have 

simulated on-demand transportation services. Simulation tools have been used to evaluate the 

performance of transportation systems from as early as 1970 (Wilson et al., 1970). This section 

will focus on the work of researchers using simulation tools to evaluate the performance of on-

demand transportation systems.  

Agatz et al. (2011) built a trip-based simulation model to match drivers and riders in an 

on-demand taxi setting. The research aimed to minimize total vehicle miles traveled and 

individual travel costs from travel demand data in Atlanta, GA. Their methods solved dynamic 

ride-share matching problems using computer simulations in C++ and was based on actual travel 

demand data. The research demonstrated the value of optimization techniques over “greedy 

matching methods” and suggested that future simulations should consider carpooling and 

occupancy dependent travel times. Cheng & Nguyen (2011) developed a multi-agent-based 

simulation platform Taxisim to adequately model realistic taxi fleet operations. They 

incorporated their analysis on the real-world behavior of self-interested taxi drivers by designing 

a background agent movement strategy. 

Vosooghi et al. (2017) published a literature review on the subject of travel demand 

estimation for carsharing systems. In this review, they concluded that activity-based models are 

more effective than trip-based models at demand forecasting and at modeling new and advancing 

modes such as one-way car sharing. The authors also noted that ride-sharing in a carsharing 

network, which had not yet been considered, is a likely part of an innovative carsharing system. 

They showed how researchers have used a random utility model (Catalano et al., 2008) and a 

discrete choice model (Kouwevhoven et al., 2011) to predict demand of a one-way carsharing 

service. They also highlighted three major simulation tools, SimMobility (Azevedo et al., 2016), 

MobiTopp (Heilig et al., 2015), and MATSim (Multi-Agent Transportation Simulation; Balac et 

al., 2015; Ciari et al., 2014; Fagnant & Kockelman, 2014; Horl et al., 2016), comparing the work 

performed over the years. 
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Using the activity-based SimMobility, Azevedo et al. (2016) modeled the supply and 

demand of an autonomous taxi network in a car-restricted zone of Singapore. Their research 

proposed an extension to SimMobility at the short-term and midterm levels to simulate 

automated vehicle (AV) taxi systems and their effects on travel behavior. They tested different 

fleet sizes and parking station configurations to observe changes in modal shares, routes, and 

destinations. 

Another mode that presents challenges and opportunities for researchers to study using 

simulations is demand rapid transit (DRT). This mode is also known as dial-a-ride, paratransit or 

flexible-route service, and literature on this subject can be found from the 1960s onwards, as 

summarized by Parragh et al. (2010). In a literature review published by Ronald et al. (2015) on 

the subject of simulating DRT, the authors concluded that agent-based simulations permit 

consideration of the user’s performance rather than the operators’ optimization.  According to 

their review, agent-based simulations have been used for shared taxis (Ciari et al., 2009; 

Martinez et al., 2013), ride-sharing (Kleiner et al., 2011) and carpooling (Dubernet et al., 2013).  

Fu (2002) attempted to simulate the operations of a dial-a-ride paratransit. Using the 

simulation platform SimParatransit, written in C++, he evaluated the operational performance of 

the system to test if automatic vehicle location technology would improve the schedules of the 

vehicles. Years later, Quadrifoglio et al. (2008) explored the impact of time windows for DRT 

service in Los Angeles County in their simulation. In a more recent study, Oh et al. (2020) used 

agent-based simulations to extend SimMobility to model an on-demand, shared, and automated 

minibus service. 

While simulation is widely used to model on-demand transport services, not all analyses 

use simulation. For example, Lin et al. (2018) showed how a bike share placement problem can 

be solved using a neural network. Basciftci & Van Hentenryck (2019) proposed a bilevel 

optimization approach to observe the mode choice of individuals in Ann Arbor, Michigan. Zhao 

et al. (2018) used machine learning and logit models to model on-demand transit and mode 

choice. Turmo et al. (2018) used mathematical models to predict which users switch from 

paratransit to taxi service if a combined program were implemented. Alonso-Mora et al. (2017) 

used mathematical models for high-capacity ride-sharing that scale to large numbers of 
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passengers and optimize routes with respect to demand locations. Ke et al. (2017) proposed a 

deep learning approach to model passenger demand in an on-demand ride service platform. 

One tool worth mentioning, called MATSim (Horni et al., 2016), is a Java-based 

transportation microsimulation developed since 2006 by a team within the Institute for Land and 

Maritime Transportation at the Technical University of Berlin. MATSim combines a detailed 

link-level transportation simulation with an evolutionary algorithm to adjust individual daily 

plans and identify system optima. The agents in MATSim attempt to execute activity plans that 

require them to travel between their activities along transportation networks that become 

congested as people use them. At the end of a transportation simulation, each agent considers 

how much time they spent doing activities (generating a benefit) and how much time they spent 

traveling (losing benefits). Each agent will then adjust their plans — change departure time, use 

a different travel mode, take a different route, etc. — and after several dozen iterations, each 

simulated agent will have a complete daily plan that maximizes their personal benefit weighted 

against fares, incomes, vehicle constraints, the congestion created by the choices of others, etc. 

The combination of a detailed simulation with a simple but powerful plan updater has made 

MATSim appealing to many researchers seeking to understand complex modern mobility 

systems. 

Extensions to MATSim led researchers to examine carsharing in Zürich (Balać et al., 

2015), autonomous vehicle replacement scenarios in Berlin (Bischoff & Maciejewski, 2016) and 

Asheville, North Carolina (Kressner et al., 2016), demand-responsive and autonomous transit in 

Brunswick, Germany (Cyganski et al., 2018), incident and disaster response in the Philippines 

(Yaneza, 2016), and first-mile / last-mile connectivity in the San Francisco Bay area of 

California (Jaller & Rodier, 2019). Viergutz & Schmidt (2019) also used MATSim to compare 

conventional public transportation to DRT in a rural town in Germany. 

In a study relevant to the simulation of individuals with wheelchairs, Bischoff (2019) 

simulated WAVs as a chapter of a dissertation of on-demand taxis in Berlin, using MATSim. To 

create daily activity patterns, he noted that “transport patterns of persons with mobility 

impairments have not been evaluated” (p. 74), and to estimate demand, he assumed that the 

current paratransit systems would be completely replaced.  From statistics for the subsidized 
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paratransit and taxi service in 2015, he estimated there are about 1,000 trips per day and that the 

trips are similar to non-work trips (neither the paratransit nor the taxi are used for work 

commutes). Using the existing MATSim scenario for the city of Berlin (Ziemke et al., 2015), 10 

random samples of 1,000 non-work trips were marked with a “wheelchair-friendly” requirement. 

The number of wheelchair-accessible taxis varied from 50 to 500 of the existing taxi supply in 

Berlin. Bischoff found that with 250 WAV vehicles (well below 5.0 percent of the city’s active 

vehicle fleet) an estimated wait time of 12:22 minutes is achieved (the target wait time was 15 

min). The taxi dispatching algorithm assigned the nearest vehicle to a customer, which means 

that WAVs will not exclusively serve wheelchair users. One consequence of this algorithm is 

that the number of required WAVs increases, however, this behavior is realistic and optimizes 

the revenue of the drivers.  

As a part of Bischoff’s (2019) study, the users limited to a wheelchair were marked as a 

separate population and the WAVs served both the wheelchair-limited and the abled populations; 

however, the methodology for estimating demand was rudimentary in that “the possible number 

of such trips is hard to estimate” (p. 74) and “there is no information about origins and 

destinations of these trips, either” (p. 75). Trips were estimated by averaging rides from 

paratransit and taxi rides in Berlin; this number is nearly doubled without explanation to pattern 

weekday behavior. This provides an opportunity to more accurately estimate travel patterns of 

individuals with wheelchairs and simulate their behavior. 

Built on the modeling framework of MATSim, BEAM (Bae et al., 2019) utilizes more 

specific ride-hailing integration. BEAM stands for Behavior, Energy, Autonomy, and Mobility 

and is an agent-based microsimulation model developed at Lawrence Berkeley National 

Laboratory and the UC Berkeley Institute for Transportation Studies. BEAM was developed to 

improve the computational efficiency of the MATSim simulation and is explicitly focused on 

energy use application, as it is a Department of Energy project. One use case of BEAM has been 

used for electric vehicle charging demand modeling (Sheppard et al., 2017). 
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2.4 Current Mobility Offerings 

This section discusses existing services to improve mobility for disabled individuals in 

the United States and other countries. Starting with a description of current mobility services 

around the nation involving paratransit, taxis, and TNCs, this section then paints a brief history 

of recent legislation regarding mobility for individuals with disabilities. The chapter ends with 

mobility services across the world specifically for users with wheelchairs. 

2.4.1 Paratransit, Taxis, and TNCs 

Residents of cities who are physically unable to use public transportation, including the 

disabled and mobility-impaired elderly, are offered car or van rides by paratransit services, as 

required by an unfunded 1990 ADA mandate (ADA, 1990). Kaufman et al. (2016) show that 

paratransit systems are enormous: In New York City, paratransit serves 144,000 subscribers at 

$456 million per year; in the Chicago region, 50,000 subscribers are served at $137 million per 

year; in Boston, 80,000 at $75 million per year. 

In a study on meeting paratransit demand, Chia (2008) evaluated the relationship between 

cost and ridership. The author showed that paratransit ridership accounts for only slightly more 

than 1.0 percent of the total transit ridership, yet paratransit costs comprised 9.0 percent of transit 

operating costs. The author also showed that on average, the cost per trip of an individual is 

$2.75, however, the cost per trip of a paratransit ride was $22.14. For the purpose of reducing 

costs, there was ample opportunity for optimization strategies to be put into place. Chia shows 

that from the beginning of paratransit service in 1992 to 2004, paratransit ridership in the United 

States increased by 58.3 percent, to more than 114 million trips, most of which were ADA-

complementary paratransit trips. Many transit agencies have also used taxis to assist with their 

required ADA paratransit service to provide a same-day service that is not officially a part of 

ADA paratransit service (Ellis, 2016).  

2.4.2 Legislation Regarding Transportation for Users with Wheelchairs 

In 2018, and in response to the growing awareness that TNCs were almost entirely 

inaccessible to wheelchair users, the Taxi and Limousine Commission (TLC) in New York City 

issued a mandate requiring Uber, Lyft and Via to make wheelchair-accessible service a growing 
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part of their operations. While this particular mandate was not adopted, a settlement was reached 

in the New York State Supreme Court. The NYC TLC retained the mandate that would require 

TNCs to meet a wait-time requirement. As summarized by DeFazio et al. (2019), the wait-time 

requirement states that, by 2021, TNCs must either service at least 80.0 percent of requests for 

WAVs in under 10 minutes and 90.0 percent in under 15 minutes, or associate with a company 

that has the capacity to meet those requirements. 

In September of 2018, the State of California passed SB 1376 (California, 2018) which 

“require[d] the Public Utilities Commission, by January 1, 2019, to begin conducting workshops 

with stakeholders in order to determine community WAV demand and WAV supply and to 

develop and provide recommendations regarding specified topics for programs for on-demand 

services and partnerships.” The bill also required each TNC, by July 1, 2019, to pay on a 

quarterly basis an amount equivalent to $0.05 for each TNC trip completed.  The bill also 

required the commission to distribute funds to access providers, such as Lyft or Uber, that 

establish on-demand transportation programs or partnerships to meet the needs of individuals 

with disabilities. 

2.4.3 Pilot Programs for Riders with Wheelchairs 

Seeing the opportunity afforded by modern mobility systems (especially TNCs) and the 

inability of some citizens to access them, some transportation agencies have begun to explore 

methods to improve system access for all users. These methods have included subsidized rides, 

driver training programs, and others. In one notable program, the Portland Bureau of 

Transportation (PBOT, 2019) offers individuals with wheelchairs the opportunity to hail a WAV 

through their own dispatch system, connecting riders with Uber, Lyft, or other partners. 

Schaller (2018), describes several cases of innovative mobility solutions for the disabled 

and elderly. Laguna Beach, California, for example, contracted with Uber to supplement 

transportation for senior and disabled passengers. The Pinellas Suncoast Transit Authority in the 

Tampa and St. Petersburg, Florida area, conducted a two-year pilot with multiple stakeholders 

including Uber, a cab company, and a wheelchair van provider for on-demand trips for 

individuals with travel-limiting disabilities. The Kansas City Area Transportation Authority is 

using taxis for same-day service for the elderly and for users with disabilities in its RideKC 
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Freedom program. The service schedules rides through a mobile app or through a call center. 

Schaller also mentions that Via – a startup company working on technologies for on-demand 

transit services – is developing a van service with the city of Berlin that complements existing 

transit service when transit may not be available such as late night and weekend travel. Schaller 

also highlights that TNCs have also recently started to participate in programs that supplement 

ADA paratransit. One example is the pilot by the Boston area transit agency that involves Uber, 

Lyft, and other companies. Users have the option to use any of the available providers instead of 

the regular ADA service. Rides can be scheduled same day (instead of the day before) and riders 

pay the same $2 fare. Similarly, the transit agency in Las Vegas, Nevada partnered with Lyft to 

provide on-demand paratransit service. 

2.5 Summary 

While there is evident research regarding travel patterns for individuals with general 

travel-limiting disabilities, little has been studied on the specific participation effects of 

individuals with wheelchairs. Even within the research of travel behavior of users with 

disabilities, there is a wide variance of conclusions, and this could be due to the lack of 

regularized methods of classifying disability severity in travel behavioral studies. Additionally, 

the existing literature has not used a regularized travel behavior modeling approach, and has 

rather consisted of ad-hoc studies on a variety of disconnected travel-related issues. 

Within the last few years, policy has changed in New York and California so that 

innovative transportation solutions (i.e., TNCs) better accommodate all users, specifically 

including those with wheelchairs. Decisions for both changes in policy and implementation of 

transportation systems can be informed by simulations like MATSim and BEAM. However, a 

detailed simulation of services aimed at users with disabilities has never been paired with a 

systematic modeling of the travel behavior for these individuals. Therefore, an understanding of 

the effect of wheelchair use on one’s DAP choice is a relevant objective for this study. 
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CHAPTER 3 DAILY PATTERNS OF ACTIVITYSIM 

3.1 Overview 

A systematic approach to modeling a WAV system in a region requires an understanding 

of the daily trips taken by individuals in that region, including when they leave home, where they 

travel to, and what modes they are likely to use. WFRC / MAG currently use a “four-step” model 

to evaluate transportation infrastructure projects in their planning areas. While this model has the 

benefit of simplicity, it provides neither the activities accomplished by individuals nor their daily 

plans, making it unsuitable for examining detailed transportation behaviors and policies such as 

ride-hailing systems.  

Activity-based models, by contrast, generate detailed and coherent DAP for individuals 

in a region. The ActivitySim (ActivitySim, 2021) activity-based travel modeling system was 

developed as an implementation of the Metropolitan Transportation Commission (MTC, the San 

Francisco Bay Area MPO) “Travel Model One” activity-based travel model. In this chapter, we 

present an implementation of this modeling framework within the WFRC / MAG planning 

region. This requires a consideration of the necessary inputs and then a calibration / validation 

exercise to transfer the model from the San Francisco region to the Salt Lake City region. 

This chapter begins with a summary of the input structure of ActivitySim, including a 

synthetic population, a socioeconomic file, and travel model network skims. The chapter then 

evaluates the efforts to validate and calibrate the ActivitySim model and concludes with a post-

calibration validation of the model. 

3.2 Inputs to ActivitySim 

This section summarizes the development of an ActivitySim implementation in the 

Wasatch Front region. An ActivitySim scenario requires three inputs:  

• A synthetic population describing both the households and the individuals in the 

greater Salt Lake City metropolitan area. 

• A zonal socioeconomic data file describing the locations of jobs by industry type. 
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• A set of travel model network skims representing the costs and travel times by all 

modes in each time period. 

Each of these inputs will be discussed in turn in the following sections, as only a 

summary is necessary for this report. 

3.2.1 Synthetic Population 

Microsimulation-based travel models require an accurate representation of a region’s 

population at a granular scale. Where trip-based models often represent the socioeconomic data 

for a zone as simply a number of households and jobs of different industries, activity-based 

models require more information on personal and household attributes such as age, gender, 

income, etc. This kind of granular data is difficult to collect and would be intrusive to privacy. A 

synthetic population, by contrast, is a data set that reproduces the individual and household 

characteristics of a region but that does not contain the specific and actual data of any real 

person. 

Many tools for generating synthetic populations exist. In general, these synthesizers work 

by sampling households and individuals from a “seed” population survey to match zonal 

aggregate “controls.” For example, the American Community Survey (ACS) Public Use Micro-

Sample (PUMS) contains details on individuals and households for a 5.0 percent sample of the 

population, but the survey respondents can only be located within an area (called a Public Use 

Micro-Sample Area, or PUMA) with a population of at least 100,000. The ACS data tables, by 

contrast, tell how many people of different income levels and educational attainment (for 

example) live in each census tract, where the population is between 1,200 and 8,000. Some data, 

such as the number of households, might be knowable at an even smaller geographic level. A 

population synthesizer allows for the detailed survey responses to be accurately “projected” 

down to smaller geographies. PopulationSim – developed alongside ActivitySim with the 

assistance of AMPO – was used to create the synthetic population for this study. For this 

research project, the generation of the synthetic population was conducted using PopulationSim 

(2021), which uses an entropy maximization-based list-balancing algorithm described by Paul et 

al. (2018). The following sections will describe the infrastructure and construction of the 

PopulationSim model and includes a description of the population seed data from ACS, the 
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controls from ACS and WFRC / MAG, a geographic crosswalk, and the validation of the 

synthetic population. 

3.2.1.1 Population Seed from ACS PUMS 

The population seed data for this research was drawn from the 2018 five-year ACS 

PUMS data for Utah, representing responses to the 2014 through 2018 ACS. We retain the 

records for persons and households residing in PUMAs in Utah, Salt Lake, Davis, Weber, and 

Box Elder Counties. 

3.2.1.2 Controls from ACS 

PopulationSim allows for controls at multiple geographic levels. The purpose of these 

controls is to define basic information such as the number of households of each size in a given 

TAZ, which the program will then try to match and assign to agents by selecting persons and 

households from the seed table. Table 3-1 presents the specific controls used for this study 

including the target data, its geographical size, the source of the data, the seed table it generates 

and an importance factor. These controls were adapted from an example developed by the 

Oregon DOT. Specific to the Salt Lake City area, these controls were derived from the ACS five-

year aggregation tables at the Census tract level, with the only exception being the number of 

households in a zone; this was obtained from the WFRC / MAG model socioeconomic data 

inputs for 2019. ACS aggregation tables were downloaded using the “tidycensus” package for R 

(Walker et al., 2020). The “importance” value indicates how carefully PopulationSim tries to 

match the control target as it iteratively constructs the synthetic population in each TAZ. The 

high importance value given to the number of households in a TAZ indicates that the synthesizer 

will accurately replicate the total number of households in each TAZ and will somewhat less 

accurately replicate each household size. It is not always mathematically possible to match all 

controls perfectly, given sampling and measurement error in both the seed table and the controls 

data. 
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Table 3-1 Synthetic Population Controls 

Target Geography Source Seed Table Importance 

Number of Households TAZ WFRC / MAG households 1000000000 

Household Size 1 Tract ACS households 10000 

Household Size 2 Tract ACS households 10000 

Household Size 3 Tract ACS households 10000 

Household Size 4+ Tract ACS households 10000 

Person Age 0-14 Tract ACS persons 10000 

Person Age 15-24 Tract ACS persons 10000 

Person Age 25-54 Tract ACS persons 10000 

Person Age 55-64 Tract ACS persons 10000 

Person Age 65+ Tract ACS persons 10000 

Household Income 1st Quartile Tract ACS households 500 

Household Income 2nd Quartile Tract ACS households 500 

Household Income 3rd Quartile Tract ACS households 500 

Household Income 4th Quartile Tract ACS households 500 

Household Workers 0 Tract ACS households 1000 

Household Workers 1 Tract ACS households 1000 

Household Workers 2 Tract ACS households 1000 

Household Workers 3+ Tract ACS households 1000 

Total Population Region ACS persons 5000 

 

3.2.1.3 Geographic Crosswalk 

Because the controls are at two different geographic levels (TAZ and Census tract) and 

the ACS PUMS seed tables are at a third (PUMA), it is necessary to supply a geographic 

crosswalk to PopulationSim. This crosswalk contains a representation of the spatial relationships 

of TAZ, Tract, and PUMAs in the modeling region. 

TAZ boundaries were imported from a GIS file provided by WFRC, while a list of the 

Census tracts in the five-county model area and their boundaries was created using the “tigris” 

package for R (Walker et al., 2020). Using this geographic information, TAZs were linked to 

their corresponding tracts and PUMA based on which tract contained the TAZ centroid. This 
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centroid-in-polygon method is a simplifying assumption, as the TAZ and tract boundaries do not 

generally align. By definition, a tract is smaller than a PUMA and is generally completely 

contained within a PUMA. An investigation into using partial spatial intersections resulted in an 

overly complex crosswalk and substantial model run times. Figure 3-1 shows the TAZ and 

Census tract boundaries in Provo where we can see the incongruencies in boundary lines; we 

expect the consequences of this simplifying assumption are likely marginal to the accuracy of the 

synthetic population. 

 

Figure 3-1 Tract (blue) and TAZ (red) boundaries in Provo, UT. 

 

3.2.1.4 Synthetic Population Validation 

After the synthetic persons and households were created, we conducted an exercise to 

validate that the synthetic population matched overall statistics for the region. According to the 

ACS five-year data for the tracts in the model area, the total population is 2.3 million individuals. 

The synthetic population generated 2.5 million individuals, an error of 7.4 percent. The reason 

for this is that the total population control parameter was generated using the 2014-2018 ACS 

estimates, while the total number of households in each TAZ, the highest weighted control, was 

taken from the 2019 WFRC model.  
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Figure 3-2 shows the difference between ACS tract-level population and the tract-level 

population controls generated by PopulationSim. In tracts shaded red, the ACS population 

estimate is lower than the one created using WFRC data, and vice versa for green-shaded ones. 

The difference between the synthetic population and the control population is greatest in the 

Census tracts with the highest growth rate, such as near Herriman in Salt Lake County and 

Vineyard in Utah County. Because of this, it was assumed that the synthetic population was still 

an accurate representation of the true Wasatch Front population, using 2014-2018 ACS PUMS 

data scaled up to match the 2019 WFRC estimates. Table 3-2 compares the distribution of the 

other population variables in the control data and the output synthetic population. The low 

margin of error on these distributions indicates that the synthetic population is a globally 

accurate representation of the model region. 

 

Figure 3-2 Difference between ACS and WFRC at the tract level. 
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Table 3-2 Synthetic Population Control Validation 

Parameter Control Population % Synthetic Population % Difference 

Household Size 1 19.13% 19.51% 1.97% 

Household Size 2 29.94% 30.53% 1.97% 

Household Size 3 15.80% 15.62% -1.14% 

Household Size 4+ 35.13% 34.34% -2.25% 

Person Age 0-14 25.51% 25.46% -0.20% 

Person Age 15-24 16.16% 15.97% -1.18% 

Person Age 25-54 39.67% 40.11% 1.11% 

Person Age 55-64 9.14% 9.02% -1.31% 

Person Age 65+ 9.52% 9.44% -0.84% 

Household Workers 0 16.90% 16.53% -2.19% 

Household Workers 1 36.52% 36.06% -1.26% 

Household Workers 2 34.52% 35.16% 1.85% 

Household Workers 3+ 12.06% 12.25% 1.58% 

 

Additionally, the PopulationSim outputs were compared with the simulated joint 

population distributions from the WFRC 2019 base year model. The WFRC model inputs do not 

contain TAZ-level breakdowns of categories such as household size or workers per household, 

but rather generates them during the process of the model run. Because of this, household type 

controls were taken from the ACS data at the tract level instead. Nevertheless, during the 

validation of our synthetic population, TAZ-level statistics were compared to ensure that the 

population was comparable to the one contained in the WFRC model. The difference between 

the two datasets is shown below in Figure 3-3 to Figure 3-5. A positive error means that for a 

given TAZ there were more households of a certain type in the synthetic population than in the 

WFRC estimates. Because the WFRC household counts were not round numbers while the 

synthetic population counts were necessarily integers, the error was grouped in bins of one for 

the figures. Figure 3-3 shows the distribution of error between counts of households of the 

various income groups at the TAZ level. Household income appears to match well; in the 

majority of TAZs the difference was less than 25 households. There is a slight rightward skew 

for the first and fourth income levels, while the middle two income groups skew left, showing 

that these groups are respectively over- and underrepresented at the regional level by a small 

amount.  

Household size was an even closer match between the synthetic population and the 

WFRC estimates. Two-person households had a slightly higher error than the other groups, while 

households of five or six-plus had the lowest error. As there were more two-person households in 
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the synthetic population than any other size and because these figures display absolute error and 

not percent error, this result is expected. 

All household worker error counts skewed left, suggesting that there was some 

fundamental difference between the ACS controls for workers and the way that WFRC 

calculates workers per household that caused a slight underestimate of total workers in our 

synthetic population compared to WFRC. Overall, there is a good fit between the two population 

estimates and using ACS tract-level controls instead of the simulated WFRC TAZ counts does 

not appear to have caused a drastically different household makeup. 

 

 

Figure 3-3 Distribution of error between PopulationSim and WFRC 2019 scenario,  

number of households by household income. 
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Figure 3-4 Distribution of error between PopulationSim and WFRC 2019 scenario,  

number of households by household size. 

 

 

Figure 3-5 Distribution of error between PopulationSim and WFRC 2019 scenario,  

number of households by household workers. 
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3.2.2 Socioeconomic File 

ActivitySim requires the input of a socioeconomic (SE) file of comprehensive zonal data. 

This includes specific data relating to the population, households, and land use of each TAZ. The 

SE file is composed of 42 different fields and was created in R. The 42 fields were extracted 

from and created using various data sources and tables. They were then placed in the correct 

order and composed into one file. The name, meaning, order, and source of each field can be 

seen in Table 3-3.  

The definition of each name from Table 3-3 is copied directly from the Travel Model 

Data Dictionary under the Bay Area Metro GitHub. Most of the fields are type integer, but the 

Data Dictionary table can still be referenced for more specific field data types. Since ActivitySim 

was created originally as a template for the San Francisco Bay Area, it made sense to rely on 

their SE file data field setup. 

Overall, the primary source of the data was gathered using tables and files from WFRC. 

They provided us with socioeconomic files for the TAZs of interest along with parcel, buildings, 

and urbanization data files as well. The WFRC SE file was useful for calculating totals regarding 

population, housing, and employment. The parcel and building datasets were composed of data 

regarding land usage, acre division, and building types. The urbanization file also had land usage 

data, along with parking rates. The WFRC GIS file was also used to help calculate various fields 

like zonal, district, and county IDs. Although WFRC provided a significant chunk of the SE data, 

other sources were used to calculate the missing fields. 

Since WFRC did not have access to all of the data needed, the synthetic population data 

tables regarding persons and households were used. These tables provided the means to calculate 

the specific divisions of household income and persons’ ages, along with the number of 

employed residents in each TAZ. WFRC provided data similar to this, but their categorical 

divisions were not the same as the needed SE file specifications. In addition to using the 

synthetic population data, the AGRC website was used to calculate the last remaining fields 

involving the topology and school information. By joining the shapefiles found on the AGRC 

website with the WFRC GIS file, the needed data was collected. 
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Table 3-3 Socioeconomic File Fields 

Name Definition Source 
ZONE Transportation analysis zone WFRC GIS file 

DISTRICT Super district geographic designation WFRC GIS file 

SD Super district geographic designation(same) WFRC GIS file 

COUNTY County WFRC GIS file 

TOTHH Total Households WFRC SE table 

HHPOP Population living in households WFRC SE table 

TOTPOP Total Population WFRC SE table 

EMPRES Employed Residents Synthetic Population Persons table 

SFDU Number of occupied single-family dwelling units WFRC Buildings & Parcels tables 

MFDU Number of occupied multi-family dwelling units WFRC Buildings & Parcels tables 

HHINCQ1 Households in lowest income quartile (< $30,000) Synthetic Population Household table 

HHINCQ2 Households in second lowest income quartile  

(> $30,000 & < $60,000) 

Synthetic Population Household table 

 

HHINCQ3 Households in second highest income quartile  

(> $60,000 & < $100,000) 

Synthetic Population Household table 

 

HHINCQ4 Households in highest income quartile (> $100,000) Synthetic Population Household table 

TOTACRE Total Acres WFRC Urbanization file 

RESACRE Acres occupied by residential development WFRC Buildings & Parcels tables 

CIACRE Acres occupied by commercial/industrial 

development 

WFRC Buildings & Parcels tables 

SHPOP62P Share of population >62 years old Synthetic Population Persons table  

TOTEMP Total employment WFRC SE table 

AGE0004 Persons age 0 to 4 Synthetic Population Persons table 

AGE0519 Persons age 5 to 19 Synthetic Population Persons table 

AGE2044 Persons age 20 to 44 Synthetic Population Persons table 

AGE4564 Persons age 45 to 64 Synthetic Population Persons table 

AGE65P Persons age 65 and older Synthetic Population Persons table 

RETEMPN Retail trade employment WFRC SE table 

FPSEMPN Financial and professional services employment WFRC SE table 

HEREMPN Health, education, and recreation service 

employment 

WFRC SE table 

AGREMPN Agricultural and natural resources employment WFRC SE table 

MWTEMPN Manufacturing, wholesale trade, and transportation 

employment 

WFRC SE table 

 

OTHEMPN Other employment WFRC SE table 

PRKCST Hourly parking rate for long-term parkers (cents) WFRC Urbanization file 

OPRKCST Hourly parking rate for short-term parkers (cents) WFRC Urbanization file 

AREATYPE Area type designation WFRC Urbanization file 

HSENROLL High school students enrolled at schools in this TAZ WFRC SE table 

COLLFTE College students full-time at colleges in this TAZ AGRC, WFRC, other online sources 

COLLPTE College students part-time at colleges in this TAZ AGRC, WFRC, other online sources 

TERMINAL Average time to travel from automobile storage 

location to origin/destination 

W FRC Urbanization file 

TOPOLOGY Topology/steepness indicator AGRC 

ZERO Placeholder --- 

HHLDS 

SFTAZ 

Repeat of TOTHH field 

Repeat of ZONE field 

WFRC SE table 

WFRC GIS file 

GQPOP Population living in group quarters instead of 

households 

WFRC SE table 
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Through the analyzation and manipulation of the WFRC data files, the synthetic 

population, and the sources found on the AGRS website, a full table of socioeconomic data was 

created. These fields were organized in the same way that the Bay metro area organized their 

table, with the same data types as well. Overall, not much information was lost throughout the 

process, and an accurate representation of the socioeconomic profile of all the TAZs was created. 

3.2.3 Travel Model Network Skims 

Finally, ActivitySim also requires network skims to model destination choice and mode 

choice, among other model steps. These skims contain important information about travel 

between every set of two zones in the region, such as travel time, distance, cost, wait time for 

transit modes, and so forth. The existing WFRC trip-based model already produces skims that 

can be configured for use in ActivitySim, though some remapping is necessary as the expected 

modes and day periods differ slightly between the two models. For example, the WFRC / MAG 

model produces initial and transfer wait time skims for transit paths; these needed to be 

combined as ActivitySim expects a skim for the total transit wait time.  

Additionally, the ActivitySim implementation only includes internal trips; as such, the 

interchanges associated with external stations were removed. Finally, ActivitySim uses the 

“Open Matrix eXchange” (OMX) format; the team wrote a Cube Voyager script to export the 

WFRC / MAG skims from Cube’s proprietary format to OMX. A complete mapping of the 

precise skims and this script are available on GitHub, but Table 3-4 presents a crosswalk of the 

relevant categories. 
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Table 3-4 WFRC / MAG and ActivitySim Skim Crosswalk 
 WFRC / MAG ActivitySim 

Modes DA – Drive Alone 

S2 – Carpool (2) 

S3 – Carpool (3) 

Tol_DA – Drive Alone Toll 

Tol_S2 – Carpool (2) Toll 

Tol_S3 – Carpool (3) Toll 

4 – Local Bus 

SOV 

HOV2 

HOV3 

SOVTOLL 

HOV2TOLL 

HOV3TOLL 

LOC, TRN 

 5 – BRT Lite (MAX) 

6 – Express Bus 

7 – Light Rail/Streetcar 

8 – Commuter Rail 

9 – BRT (UVX) 

dist 

dist 

- 

EXP 

LFR 

COM 

HVY 

WALK 

BIKE 

Day Periods Peak AM, PM 

 Off-peak Mid-day, Evening, Night 

Variables 

(Drive) 

 

 

Variables 

(Drive+ Transit) 

 

 

 

 

 

 

 

 

 

Variables 

(Walk+ 

Transit) 

 

 

 

 

 

 

Variables 

(Non-motorized) 

ivt 

dist 

Fee 

 

INTITWAIT+XFERWAIT 

T4 (or T5, T6, etc.) 

T4+DRIVETIME 

XFARE 

DRIVETIME 

DRIVEDIST 

WALKTIME 

INTITWAIT 

XFERWAIT 

BOARDINGS 

 

INTITWAIT+XFERWAIT 

T4 (or T5, T6, etc.) 

T4 (or T5, T6, etc.) 

XFARE 

WALKTIME 

INTITWAIT 

XFERWAIT 

BOARDINGS 

 

xydist 

xydist 

 

TIME 

DIST 

VTOLL 

 

WAIT 

KEYIVT 

TOTIVT 

FAR 

DTIM 

DDIST 

WAUX 

IWAIT 

XWAIT 

BOARDS 

 

WAIT 

KEYIVT 

TOTIVT 

FAR 

WAUX 

IWAIT 

XWAIT 

BOARDS 

 

DISTWALK 

DISTBIKE 
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3.3 Validation and Calibration 

This section will describe the motivation and process behind the validation and 

calibration of ActivitySim by first showing the validation of trip productions, followed by the 

validation of trip distribution. The section concludes with the mode choice calibration. 

A four-step model generates output at each stage of the model: Trips are produced by 

households and businesses in each TAZ; these trips are distributed to pair up origins and 

destinations; the mode choice model splits these trips between modes; and the trips are then 

assigned to highway links and transit routes. An activity-based model works by having 

individuals choose whether to participate in activities, then choose which locations those 

activities occur at, and then which modes are used to get between them. The assignment step for 

an activity-based and four-step model can be the same. The goal at this stage in our research is to 

validate and calibrate the ActivitySim model to the Salt Lake City Area, so that trip productions, 

distributions, and mode choices match the given target values from the WFRC / MAG four-step 

travel model. There is a detailed household travel survey in Utah that could be used for 

validation and calibration targets; however, the most recent data collected from this survey was 

from 2012, making it unappealing for this purpose. The regional travel demand model has more 

updated information, though it is modeled and not “actual.” For conciseness, the WFRC / MAG 

four-step model is referred to as simply the “WFRC model” in this section. 

3.3.1 Validation of Trip Productions 

Trip productions are an outcome of the first step in the four-step model and represent the 

volume of trips “produced” from certain areas – in this validation exercise we aggregate the 

productions to counties. Table 3-5 shows the total trip productions estimated by the WFRC four-

step model for each county by trip purpose. As expected, the majority of trips are produced in 

Salt Lake County, and the majority of trip productions are home-based work trips and home-

based other trips. The initial run of the Salt Lake ActivitySim scenario yielded similar 

proportions of trip productions, as shown in Table 3-6.  

A challenge in comparing ActivitySim output to WFRC output was the inconsistency in 

trip purpose categorization between the two models. WFRC classifies trips in six different 
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categories, while ActivitySim has 12 different categories. Additionally, the way ActivitySim and 

the WFRC model produce trips by purpose is fundamentally different. For these reasons, it is 

difficult to make a direct comparison between the two models in terms of trip purpose 

distribution, though the differences are not strikingly different. A better comparison is by total 

trips per county and percent volume per county. While the WFRC model accounts for more trips 

produced at each county, the distribution of trips across counties were almost identical, within 

variation of 1.0 percent. Another notable difference is the total number of trips produced from 

each county; the estimation from ActivitySim is less than the target productions estimated from 

WFRC by more than 200,000 trips in Davis County and by more than 400,000 trips in Salt Lake 

County. One hypothesis is that because the synthetic population comes from 2014-2018 data and 

the WFRC / MAG data comes from 2019-2020 data, the difference in years would prove to 

generate more trips from the newer data set from where the population is larger. Although, the 

annual population growth factor in Utah is only 3.0 percent. Given this hypothesis, it is also 

important to note that WFRC / MAG model is a trip-based model and ActivitySim is an activity-

based model; therefore, there is expected to be some discrepancy in the data. This difference in 

volume is significant but not practical for the objectives of this report, as the relevant measure of 

validation is the proportion of trips for each purpose by county. 

 

Table 3-5 Trip Productions from WFRC / MAG Regional Model 

Trip Purpose Box 

Elder 

Davis Salt Lake Utah Weber 

Home-Based Other 43,126 542,324 1,692,979 969,068 377,782 

Home-Based School 4,550 58,277 147,132 108,890 34,983 

Home-Based Shopping 11,212 137,019 430,310 234,226 97,414 

Home-Based Work 16,618 259,243 889,214 433,636 182,038 

Non-Home-Based Non-

Work 

17,018 209,735 812,799 383,185 170,393 

Non-Home-Based Work 8,256 98,814 460,832 182,404 80,339 

Total 100,782 1,305,414 4,433,269 2,311,411 942,951 

Total 1.1% 14.4% 48.8% 25.4% 10.4% 
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Table 3-6 Trip Productions from ActivitySim Model 

Trip 

Purpose 

Box Elder Davis Salt Lake Utah Weber 

atwork 1,468 26,862 140,170 53,014 22,173 

eatout 3,688 47,983 179,671 89,962 37,236 

escort 8,708 83,090 283,159 173,093 60,150 

Home 33,172 370,299 1,477,715 738,517 304,186 

othdiscr 5,399 61,520 203,865 108,442 44,514 

othmaint 5,206 62,085 220,568 109,687 48,721 

school 8,554 82,003 228,816 158,315 55,388 

shopping 8,613 103,081 363,713 182,702 80,096 

social 2,426 24,819 89,779 47,168 20,511 

univ 908 7,409 34,940 24,774 6,513 

work 11,361 144,394 535,869 265,520 103,927 

Work 1,452 26,616 140,513 52,947 22,159 

Total 90,955 1,040,161 3,898,778 2,004,141 805,574 

Total 1.2% 13.3% 49.7% 25.6% 10.3% 

 

3.3.2  Validation of Trip Distribution 

Trip distribution is the outcome of the second step of the WFRC four-step model and 

maps trip productions and attractions at separate locations to origin-destination pairs. The trip 

distributions from county to county from the WFRC model are shown as volumes in Table 3-7 

and as percentages in parenthesis. For clarity, the percentages in Table 3-7 are organized by 

percent of trips from origin county, for example, 13.2 percent of trips from Box Elder are going 

to Weber. As shown, the vast majority of trips are intra-county trips, especially in Salt Lake and 

Utah counties. There are also high volumes of trips to neighboring counties (i.e., Davis-Weber, 

Salt Lake-Davis, and Utah-Salt Lake); and few trips are going beyond neighboring counties. 

Table 3-7 Trip Distribution Volumes from WFRC / MAG Regional Model 

Origin Box Elder Davis Salt Lake Utah Weber 

Box Elder 103,229 (81.5) 4,240 (3.3) 2,446 (1.9) 38 (0.0) 16,760 (13.2) 

Davis 2,854 (0.2) 1,236,737 (76.5) 226,139 (14.0) 5,923 (0.4) 144,670 (9.0) 

Salt Lake 329 (0.0) 99,716 (1.8) 5,468,782 (96.2) 109,982 (1.9) 8,934 (0.2) 

Utah 9 (0.0) 11,562 (0.4) 211,470 (7.3) 2,661,490 (92.2) 975 (0.0) 

Weber 12,275 (1.0) 138,013 (11.8) 36,618 (3.1) 1,504 (0.1) 985,695 (84.0) 
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Similarly, the trip distributions derived from the Salt Lake ActivitySim scenario show 

strong intra-county trips, with few trips beyond neighboring counties. Table 3-8 shows the trip 

distribution from county to county of the ActivitySim Salt Lake scenario as volumes and 

percentages in parenthesis. Comparing the volumes of WFRC and ActivitySim from Table 3-7 

and Table 3-8, the majority of all trips are within Salt Lake County, however, the ActivitySim 

model generates only slightly more than half of the trips generated by the WFRC model. The 

comparison of percentages from WFRC and ActivitySim are highly similar and are accurate 

within 4.0 percent error across all counties. A margin of error of this size is sufficient for the 

validation comparison between WFRC and ActivitySim estimations of trip distribution. Overall, 

the trip productions and distributions from ActivitySim closely follow the target values from the 

WFRC model estimations. The similarities are not exact, but they are satisfactory.  

Table 3-8 Trip Distribution Volumes from ActivitySim Model 

Origin Box Elder Davis Salt Lake Utah Weber 

Box Elder 77,693 (85.4) 2,168 (2.4) 864 (0.9) 26 (0.0) 10,204 (11.2) 

Davis 2,113 (0.2) 817,711 (78.6) 101,548 (9.8) 2,295 (0.2) 116,494 (11.2) 

Salt Lake 842 (0.0) 102,004 (2.6) 3,662,886 (93.9) 121,642 (3.1) 11,404 (0.3) 

Utah 22 (0.0) 2,277 (0.1) 121,676 (6.1) 1,879,722 (93.8) 444 (0.0) 

Weber 10,285 (1.3) 116,001 (14.4) 11,804 (1.5) 456 (0.1) 667,028 (82.8) 

 

3.3.3 Mode Choice Calibration 

Mode choice describes how the population chooses a mode for each trip, and the WFRC 

model estimates are shown by purpose in Table 3-9. Work, University, and Other are the 

purposes selected for comparison because of commonalities between WFRC and ActivitySim 

output. Not shown in Table 3-9 is “single occupancy automobile,” which by far holds the largest 

share of mode choice and is not included because it stands as the reference alternative in the 

ActivitySim model – the other modes are calibrated, while the reference alternative occupies the 

remainder. The shared rides and non-motorized modes in Table 3-9, across all purposes, 

generally hold the next largest mode shares. Transit walk access for “University” trips is another 

notably high share from the WFRC model. 

The WFRC model runs all trips through a single mode choice model. ActivitySim, by 

contrast, allows its individuals to first select a mode for their tour – from when they leave home 
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to when they return – and separate modes for each trip on the tour. Tours are categorized as 

either “mandatory” or “non-mandatory” and are determined by the primary purpose for leaving 

the home. Trips on the other hand, are defined as a single event from an origin to a destination. 

While a trip has only one mode, a tour has one primary mode despite the many trips and modes 

of those trips within a single tour. Here is a simple example: One might take a bus to work, but 

on their walk to the bus stop, they stop at a store. Collectively this tour would be defined as a 

“mandatory” tour that included a shopping trip and a work trip. The mode is defined for each trip 

and for each tour. In this example, the first trip mode is “non-motorized” and the second trip 

mode is “local bus.” The mode category is determined by the primary purpose of the tour and in 

this case would be the mode used to go to work, in this case “local bus.”  

ActivitySim uses choice models in a nested logit choice model tree, as shown in Figure 

3-6, to determine the mode choice for each tour and each trip. The tour modes are broken into 

auto, non-motorized, or transit nests for each purpose. As part of the auto nest, shared-ride of two 

individuals and shared-ride of three or more individuals are the available modes, and single 

occupancy rides is the reference alternative, where the coefficient is zero. Non-motorized modes 

are either walk or bike but are summarized into one coefficient as non-motorized to match the 

mode share categories of the WFRC model (there is no walk or bike distribution available from 

WFRC). The third nest is transit and is either walk transit or drive transit by various transit 

modes including local bus, express bus, commuter rail, light rail, and heavy rail (heavy rail is 

also not available in the WFRC model).  

Similar to the trip production validation exercise, there was also the challenge of 

inconsistent mode categories between the two frameworks: The WFRC model includes 10 trip 

mode choices, according to Table 3-9. ActivitySim does include the same 10 tour mode choice 

categories, as shown in Table 3-10, while ActivitySim includes only five of those trip mode 

choices, as shown in Table 3-11. Because of the complexity of the relationship among 

ActivitySim’s choice models, the selection of mode then influences the available and likelihood 

of choices of trips within each tour. For this reason, both trips and tours from ActivitySim are 

considered.  
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Figure 3-6 ActivitySim nested logit choice model structure (MTC, 2012, p. 100). 

 

From the WFRC model, as shown in Table 3-9, the shared rides and non-motorized 

modes comprise the largest split; of these mode choices, there are large differences when 

compared to the ActivitySim output in Table 3-10 and Table 3-11. ActivitySim underrepresents 

non-motorized trips for university and other trips and overrepresents non-motorized work trips. 

ActivitySim also underrepresents shared rides across all trip purposes. There is also a large 

difference in commuter rail for work tours and in local bus for all tour purposes; ActivitySim 

largely overrepresents these trips too. While the WFRC model and the ActivitySim model for 

Salt Lake City show comparable trip productions and distributions, the mode choice does not 

satisfy our requirements and requires calibration.  
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Table 3-9 Mode Choice of Trips from WFRC / MAG 

Regional Model 

Mode Work University Other 

Express Bus 0.08% 0.08% 0.00% 

Commuter Rail 0.92% 3.34% 0.10% 

Non-Motorized 4.67% 17.56% 11.32% 

Shared Ride (2) 9.90% 10.55% 23.04% 

Shared Ride (3+) 5.85% 5.64% 34.79% 

Local Bus 0.94% 5.96% 0.33% 

Light Rail (Walk) 1.15% 4.00% 0.39% 

Light Rail (Drive) 0.19% 1.27% 0.02% 

Transit Walk Access 2.85% 16.42% 0.87% 

Transit Drive Access 0.57% 3.49% 0.05% 

 

Table 3-10 Mode Choice of Tours from ActivitySim 

Pre-Calibration 

Mode Work University Other 

Express Bus 0.03% 0.32% 0.11% 

Commuter Rail 4.37% 3.72% 0.62% 

Non-Motorized 7.95% 8.42% 19.64% 

Shared Ride (2) 11.85% 3.40% 19.69% 

Shared Ride (3+) 6.93% 3.56% 21.39% 

Local Bus 15.71% 41.78% 10.91% 

Light Rail (Walk) 4.22% 5.59% 1.98% 

Light Rail (Drive) 0.59% 0.49% 0.10% 

Transit Walk Access 20.94% 47.94% 13.26% 

Transit Drive Access 3.99% 3.97% 0.47% 

 

Table 3-11 Mode Choice of Trips from ActivitySim 

Pre-Calibration 

Mode Work University Other 

Express Bus 0.05% 0.23% 0.08% 

Commuter Rail 2.60% 2.45% 0.40% 

Non-Motorized 10.40% 11.50% 21.08% 

Shared Ride (2) 7.77% 4.15% 18.80% 

Shared Ride (3+) 3.22% 1.90% 15.68% 
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To calibrate ActivitySim such that mode choice by purpose matches the target mode 

choice from the WFRC model, the alternative-specific constants need to be adjusted inside the 

choice models of ActivitySim for both tours and trips. The utility function for individual 𝑛 

choosing a particular mode 𝑖 can be expressed as outlined in Equation 1. 

𝑉𝑛𝑖 = 𝛼𝑖 + 𝛽𝑖𝑋𝑛𝑖 (1) 

Where 𝛼𝑖 is an alternative-specific constant, 𝑋𝑛𝑖 is a vector of mode attributes (e.g., travel 

time and costs), and 𝛽𝑖 is a vector of estimated coefficients. These coefficients determine the 

likelihood of each agent’s choice of mode choices by purpose in the simulation. It is known (see 

Train, 2009) that that the overall mode share resulting from a choice model is determined by the 

values of the 𝛼𝑖 constants for each mode, and that any resulting bias can be adjusted using 

Equation 2. 

𝐸(𝛼𝑖) = �̂�𝑖 + ln (
𝐴𝑖
𝑆𝑖
) 

(2) 

Where the biased alternative-specific constant �̂� for a particular mode 𝑖 can be adjusted 

by a factor to obtain the expected true value 𝐸(𝛼). The target mode share of the WFRC model is 

represented by 𝐴 and the given, modeled mode share from ActivitySim is represented by 𝑆. 

Thus, ln(
𝐴

𝑆
) becomes a correction value that improves the estimate of 𝛼 to an estimate that better 

reflects the Salt Lake region. 

The ActivitySim model was calibrated by changing both the tour mode choice 

coefficients and the trip mode choice coefficients for each purpose over several iterations. This 

calibration took five iterations to approximate the target mode choice values from WFRC for 

each purpose. The results from the tour calibration and trip calibration are shown in Figure 3-7 

and Figure 3-8, respectively. These figures show dotted lines representing the target values (from 

WFRC) and solid lines representing the simulated value and their improvement over the five 

iterations. Notice how the solid line, the simulated value, approaches the target values for each 

mode by each purpose. The values that stray the most from the target are of the “University” 

purpose and “local bus” mode. This error could be caused by a mixture of “school” and 

“university” coefficients (these are unique categories in the ActivitySim model, however, the 
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WFRC model only includes “university”). To minimize this error, we identified agents in 

ActivitySim over the age of 18 taking school trips and labeled them as “university students.” The 

error summary of both tours and trips are shown in Table 3-12 and Table 3-13, respectively. The 

final mode choice values by purpose vary from the target mode choice values by a maximum 

error of 5.3 percent of tours, according to Table 3-12, across all modes and 4.3 percent of trip 

modes, according to Table 3-13. This is an acceptable margin of error to continue in the research 

as the average error across all modes for both tours and trips is less than 1.5 percent. 

 

Figure 3-7 Tour mode share calibration; WFRC model target at dotted line. 
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Figure 3-8 Trip mode share calibration; WFRC model target at dotted line. 

 

Table 3-12 Estimated Error of Tour Mode Share Calibration 

Iteration Maximum Average Standard Deviation 

1 35.82 6.32 8.99 

2 6.87 3.77 2.39 

3 6.27 2.35 1.71 

4 4.17 1.59 1.20 

5 4.25 1.20 1.04 

 

Table 3-13 Estimated Error of Trip Mode Share Calibration 

Iteration Maximum Average Standard Deviation 

1 19.11 3.76 4.68 

2 8.36 2.44 2.83 

3 9.59 1.78 2.43 

4 6.31 1.24 1.61 

5 5.3 1.06 1.31 
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3.4 Post-Calibration Validation 

After calibrating the mode choice models, a final validation was necessary to verify that 

productions and distributions from the ActivitySim model did not vary from its original outputs 

on the other model steps. We found that trip productions and distributions saw minimal changes. 

Table 3-14 shows the trip productions from ActivitySim after its calibration, and the change in 

volume is less than 0.1 percent from each county when compared to the pre-calibration values in 

Table 3-6.  

Table 3-14 Trip Productions Post-Calibration from ActivitySim 

Trip Purpose Box Elder Davis Salt Lake Utah Weber 

atwork 2,122 30,021 154,549 56,096 22,958 

eatout 4,085 51,439 190,920 94,190 39,149 

escort 9,442 88,720 302,936 181,024 63,261 

Home 35,416 376,254 1,473,780 737,251 303,164 

othdiscr 5,624 63,289 211,084 110,978 46,060 

othmaint 5,789 66,462 235,977 114,448 51,128 

school 8,600 81,886 229,201 157,956 55,556 

shopping 9,629 110,446 389,842 190,963 84,295 

social 2,607 26,891 96,139 49,254 21,471 

univ 901 7,538 34,484 25,117 6,545 

Work 13,614 176,665 699,595 322,451 127,402 

Total 97,829 1,079,611 4,018,507 2,039,728 820,989 

Total 1.2% 13.4% 49.9% 25.3% 10.2% 

 

Trip distribution from the ActivitySim model also shows minimal difference from before 

calibration. This is to be expected, as the change in mode does not change the likelihood of an 

agent taking a trip. Table 3-15 shows the volumes and percentages post-calibration from 

ActivitySim. It is clear that trip distributions see minimal changes from pre-calibration, as shown 

in Table 3-8. 
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Table 3-15 Trip Distribution Volumes Post-Calibration from ActivitySim 

Origins       Box Elder           Davis           Salt Lake                   Utah         Weber 

Box Elder 84,655 (86.5) 2,191 (2.2) 602 (0.6) 25 (0.0) 10,356 (10.6) 

Davis 2,125 (0.2) 857,084 (79.4) 100,412 (9.3) 2,361 (0.2) 117,629 (10.9) 

Salt Lake 578 (0.0) 100,884 (2.5) 3,776,825 (94.0) 130,620 (3.3) 9,600 (0.2) 

Utah 22 (0.0) 2,482 (0.1) 130,496 (6.4) 1,906,405 (93.5) 323 (0.0) 

Weber 10,449 (1.3) 116,970 (14.2) 10,172 (1.2) 317 (0.0) 683,081 (83.2) 

 

3.4.1 Trip Length Frequency  

Trip length frequency shows the length of trips, in miles, of a population by mode and the 

frequency of that trip length and is another method of validating the model. Trip length 

frequency plots can be used to compare the trip-making behavior of the individuals of a 

population and further validate the ActivitySim model. Here trip length validation is shown for 

each mode category: automobile, transit, and non-motorized, and for each mode within those 

categories.  

The automobile mode choice category is made up of three different modes: drive alone 

free, shared ride (2), and shared ride (3+). As shown, ActivitySim underrepresents the frequency 

of trips under 3 miles in each category, and slightly overrepresents trips between 3 and 10 miles. 

For all groups in the automobile category, the comparison is acceptable and sufficiently 

represents the trip-making behavior of the WFRC model for the purposes of this research, 

although there are fewer trips from ActivitySim than trips from WFRC, as shown by the red line 

in the figures. While “auto” represents the general class of automobile ridership, 

“Drivealonefree” represents ridership of a single person, “shared2free” represents the ridership 

from carpool trips of two persons, and “shared3free” represents carpool trips of three or more 

persons. 
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Figure 3-9 Trip length frequency charts for automobile modes. 

 

In each of the four transit mode choice categories in the two models, there are agents who 

“walk” or “drive” to those transit modes; thus, there are a total of eight transit mode choice 

groups that are compared in the “transit” branch of the mode choice model tree: commuter rail 

(drive and walk) represented by “com” in these figures, express bus (drive and walk) represented 

by “exp,” local bus (drive and walk) represented by “loc,” and light rail (drive and walk) 

represented by “lrf.”  
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Figure 3-10 Trip length frequency chart for general transit. 

 

In the overall transit category shown in Figure 3-10, ActivitySim underrepresents transit 

for trips less than 3 miles and overrepresents transit in trips between 3 and 10 miles. Specifically 

for commuter rail (see “drive to transit” in Figure 3-11 and “walk to transit” in Figure 3-12), 

ActivitySim underrepresents trips less than 10 miles for agents who drive to the mode, and 

underrepresents trips above 10 miles for those who walk to the mode. In a general sense, 

ActivitySim tends to overestimate longer trips for those who drive and underestimate longer trips 

for those who walk, and this trend is reversed for shorter trips. ActivitySim generally 

underrepresents short trips for those who drive. Considering agents who walk to commuter rail, 

ActivitySim closely approximates trips less than 10 miles. The express bus was more difficult for 

ActivitySim to estimate and shows some discrepancy. For trips above 20 miles on the express 

bus, ActivitySim overrepresents agents who drive and underrepresents agents who walk. WFRC 

models the express bus with distinct peaks that represent the specific trips that the express bus 

provides specific to the Salt Lake Area. ActivitySim models a more general trend of trips on the 

express bus, both for those who drive and walk, and though different, ActivitySim estimates the 

trips with an accuracy sufficient for this research purpose.  
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Figure 3-11 Trip length frequency charts for “drive to transit” modes. 
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Figure 3-12 Trip length frequency charts for “walk to transit” modes. 

 

ActivitySim also represents well the non-motorized share of trips in the trip length 

frequency validation, as shown in Figure 3-13. The trips of lengths less than 1 mile are slightly 

underrepresented by ActivitySim, while trips of length between 1 and 3 miles are slightly 

overrepresented. This difference is negligible for our research purposes, though further 

calibration could result in more accurate models. 
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Figure 3-13 Trip length frequency chart for non-motorized modes. 

 

3.5 Summary 

As the objective of this research is to first understand the effect of wheelchair use on 

one’s choice of DAP and second to use that understanding to model a WAV system, the purpose 

of this project is not to create a model that can be used by WFRC / MAG for infrastructure 

alternatives analysis. Consequently, the calibration efforts reported in this chapter aim to adjust 

the ActivitySim model so that it produces a reasonable picture of realistic trips in the Wasatch 

Front Region. A “true” calibration exercise would generate new survey targets from the most 

recent household travel survey and aim to faithfully reproduce those targets with the model; that 

level of effort is outside the scope of this research. 

This chapter described the inputs required by ActivitySim and discussed the process of 

validation of trips productions, distributions, and mode choice from the ActivitySim model with 

the target values from the WFRC / MAG trip-based travel-demand model. We found that without 

any calibration, ActivitySim produced reasonable allocation of trips by purpose and by county 

for both trip productions and distributions. The mode choice models, however, required 

calibration. These were calibrated by adjusting the choice alternative-specific constants within 

the tour mode choice and the trip mode choice models. After calibration, the “reasonable” 
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ActivitySim model proves useful in generating DAP for the synthetic population of the Salt Lake 

Area.  

As was mentioned, the calibration of the model was based primarily on mode choice, but 

it could be improved and calibrated on other metrics such as trip length distribution or trip origin 

/ destination. The target values from WFRC / MAG used for calibration were generated from 

their four-step model and not from observed data. While our methods of calibrating the 

ActivitySim model to the Salt Lake Area were sufficient for the limited purposes of this project, 

more robust calibration would be necessary were this model to be used for infrastructure policy 

analysis by the regional planning agencies.  

Considering Figure 1-1, this chapter provided context and understanding of the necessary 

validation and calibration of ActivitySim. On this foundation, we can move forward to consider 

the DAP of individuals who use wheelchairs, and how they inform the choice models of 

ActivitySim.  
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CHAPTER 4 DAILY PATTERNS OF WHEELCHAIR USERS 

4.1 Overview 

This report has to this point discussed the set up and validation of the activity-based 

model, ActivitySim and its implementation to a custom scenario in Salt Lake City. This 

background has set the stage for a primary contribution of this research: to understand the effect 

of wheelchair usage on one’s choice of DAP. The process of measuring the effect of wheelchair 

usage will be discussed in this chapter. 

Virtually all travel demand models have different model parameters for persons of 

different types. This allows, for example, for full-time workers to have different modeled daily 

activity patterns and trip distribution characteristics than non-workers or children. This 

categorization of types of persons based on their generic behavior will be referred to as person-

types. Within specific person-type segments, certain variables such as age, gender, or income 

may provide additional sensitivity or accuracy in these behavior models.  

Despite the literature researching differences in travel patterns within the community of 

individuals with disabilities, as discussed in Section 2.2, we have found no extant regional travel 

demand models that include disability status as either a separate person-type segment or as a 

modifying variable in travel behavior. To realistically simulate the daily activity plans of 

wheelchair users within the WAV simulation, it is necessary to obtain estimates for travel 

behavior model parameters for these users, and how these parameters differ from the non-

wheelchair-using population.  

This chapter first presents an examination of the DAP of wheelchair users in the 2017 

NHTS. Next, this chapter shows the modeling and estimation of DAP, using a multinomial logit 

framework. Then the chapter covers the application of the estimated DAP model coefficients in 

the ActivitySim scenario for the Wasatch Front Region. Finally, this chapter covers the DAP 

analysis, discussing the individual, household, and aggregate change in estimated travel resulting 

from including wheelchair status in the model. 
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4.2 Examination of Daily Patterns in NHTS 

The first model in the ActivitySim model chain is a DAP model of the type described by 

Bradley and Vovsha (2005). This model allows individuals to choose one of three daily activity 

patterns:  

• Mandatory daily patterns revolve around school and work activities that are typically 

considered non-discretionary. These activities and the travel to them anchor an 

individual’s daily schedule, though other tours are possible.  

• Non-Mandatory daily patterns involve only discretionary activities: shopping, 

maintenance, etc.  

• At-Home daily patterns describe the schedule and activities of individuals who never 

leave home during the travel day. 

To study the DAP of individuals, we obtained survey responses from the 2017 NHTS. 

The data is restricted to households where the metropolitan statistical area (MSA) population 

size is between one and three million people, as individuals in these areas will travel most 

similarly to individuals in the Salt Lake City metropolitan area. There are 34,817 individuals in 

18,773 households that responded to the NHTS from these areas. The NHTS data are distributed 

for public use in four tables: 

• a “Persons” table describes the attributes of all persons responding such as age, 

gender, and if they have a travel-limiting disability;  

• a “Households” table with attributes of each household such as income and auto 

ownership;  

• a “Trips” table with attributes of each persons’ trips such as mode, duration, purpose 

and length; and  

• a “Vehicles” table which is not used in this study.  

Understanding the DAP for a given individual requires a list of their activities for each 

tour, and not simply a list of the trip purposes as provided. From the trips table, we derived 

activities with start time, end time, duration, and locations. These activities were chained 

together to create daily tours of individuals and joined person and household attributes to these 
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tours. Each tour was identified as “mandatory,” “non-mandatory,” and “home.” If any tour 

contained a “mandatory” activity, the person’s entire DAP was classified as “mandatory,” if not, 

the DAP was “non-mandatory.” By identifying respondents in the persons table without records 

in the trips table, they were assigned a “home” daily activity pattern. 

ActivitySim classifies persons into seven person segments, though we only consider four 

segments in this study, defined as follows:  

• Full-time workers - reported working “full time” at their primary job.  

• Part-time workers - reported working “part time” at their primary job, as well as any 

person who reported being a “non-worker” or “retired” who nevertheless reported a 

work or school activity.  

• Non-working adults - reported “unemployed” as their primary activity of the previous 

week, as well as individuals over 18 who were not classified elsewhere.  

• Retired - reported “retired” as their primary activity of the previous week, or who are 

over the age of 65 and reported that they were not workers.  

The other three person types are university students, schoolchildren under driving age, 

and driving-age schoolchildren. A limited number of individuals who could plausibly be 

considered university students responded to the NHTS, so we cannot estimate reliable choice 

models. Among schoolchildren of any age, too few report using wheelchairs to justify including 

these segments in this study.  

The NHTS also contains responses to questions that allow us to infer wheelchair use for 

respondents. There are questions where respondents can indicate a disability for themselves or 

other household members. Each respondent is asked “Do you have a condition or handicap that 

makes it difficult to travel outside of the home?” If the answer is yes, several follow-up questions 

are asked, including “Do you use any of the following medical devices? Select all that apply.” 

The list of medical devices respondents can indicate includes canes, walkers, seeing-eye dogs, 

crutches, motorized scooters, manual wheelchairs, motorized wheelchairs, or something else 

(other). For this study, wheelchair users are identified as respondents who report using a manual 

wheelchair, mechanical wheelchair, or motorized scooter. 
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The DAP summary by person type in Table 4-1 shows the frequency of DAP chosen by 

NHTS responses for each ActivitySim person type, plus wheelchair users. These data show that 

wheelchair users choose a “mandatory” or “non-mandatory” DAP, more frequently than a 

“home” DAP. However, there is a larger percentage of wheelchair users that choose a “home” 

DAP when compared to full-time workers and non-workers. While some wheelchair users 

behave similarly to full-time workers, part-time workers, non-workers, or retired person type 

groups, the models used for estimation do not consider “Wheelchair User” as a distinct person- 

type segment, rather a wheelchair use variable for the existing person types is used in modeling 

and estimating DAP from the NHTS data source.  

Table 4-1 Daily Activity Pattern Distribution by Person Segment 

Person Type Home Mandatory Non-Mandatory 

Full-Time Worker 1,419 10,076 4,414 

Part-Time Worker 1,117 0 2,535 

Non-Worker 428 2,305 1,478 

Retired 2,271 0 6,800 

Wheelchair User 103 311 154 

Driving Age Student 143 455 235 

Pre-Driving Age Student 309 18 246 

Total 5,790 13,165 15,862 

 

4.3 Modeling, Estimating DAP from NHTS 

The purpose of our estimation modeling research is not to identify a definitive best fit 

model of activity pattern choice for each person type, but rather to provide a realistic estimate of 

the effect that wheelchair use has on DAP. Using a multinomial logit model (Train, 2009), we 

estimate the DAP of individuals accounting for income categories, age categories, gender, 

education, work-from-home status, and wheelchair use for each of the person-type segments. 

While it was considered to use wheelchair users as a segmented person type to more accurately 

model their behavior, the practice of using wheelchair as a variable in the existing person-type 

segmentation proved equally significant. An alternate analysis considering wheelchair users as 

an independent person-type segment is described in greater detail in Appendix A. 
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We estimate the models using the mlogit software for R (Croissant, 2019; R Core Team, 

2020). Table 4-2 presents the estimated model coefficients and shows each of the variables used 

in the model among each of the person-type models according to both “mandatory” and “non-

mandatory” DAP. In these models, the home DAP is the reference alternative; coefficients 

indicate the additional utility (or disutility) contribution from that variable relative to choosing 

home. Additional variables – including auto ownership for full-time workers – proved 

insignificant and are omitted. The signs of each coefficient are to be expected, though not all are 

significant. For instance, full-time workers in the middle two income groups are less likely to 

choose “non-mandatory” patterns (the lowest income group is the reference and is equal to zero), 

and part-time workers of higher income are less likely to choose “mandatory” patterns. Income 

appears to have no discernible effect on the choices of non-working and retired individuals. 

Indeed, wheelchair use is among the strongest predictors of DAP choice across population 

segments. We see a negative utility score for all person types with a wheelchair variable, and 

“mandatory” is even more negative. This is expected as individuals with wheelchairs are less 

likely to take a work or school trip compared to a shopping or a recreational trip. Non-workers 

and retired person types do not have a coefficient for “mandatory” DAP because those users by 

definition do not take “mandatory” DAP. 

The key coefficients to observe in Table 4-2 are in the highlighted row labeled 

“Wheelchair Use.” These coefficients determine the choices of the person type. Notice that all 

person types have both negative and significant coefficients on wheelchair use. This shows that 

all person types with wheelchair status are significantly less likely to have a “mandatory” or 

“non-mandatory” DAP, and that wheelchair users that are retired are also less likely to leave the 

home. 
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Table 4-2 Model Estimation Results  
Full-Time 

Worker 

Part-Time 

Worker 

Non-

Worker 

Retired 

(Intercept): M                2.11 *** 1.49 *** 
  

(Intercept): NM               1.13 ***   -0.04 0.59 ***    -1.17 

Wheelchair Use: M     -1.87 *** -3.38 *** 
  

Wheelchair Use: NM    -0.63 -1.90 *** -0.72 ***    -1.26 *** 

Works at home: M                -1.57 *** -1.38 *** 
  

Works at home: NM               -0.07     0.1 
  

Male: M                       -0.01    -0.05 
  

Male: NM                      -0.16 *    -0.24 * -0.28 ***     0.24 *** 

Bachelor degree: M               0.38 *** 0.27 * 
  

Bachelor degree: NM              0.68 ***     0.53 ***   0.48 ***     0.35 *** 

Income $25k - $50k: M    -0.09      0.01 
  

Income $25k - $50k: NM -0.38 *      0.28  -0.06    -0.09 

Income $50k - $100k: M   -0.23 -0.38 * 
  

Income $50k - $100k: NM -0.34 *      -0.01  -0.06     0.11 

Income > 100,000: M           -0.27 -0.40 * 
  

Income > 100,000: NM          -0.27      -0.06  -0.04     0.04 

Age 40-64: M               0.02       0.54 *** 
  

Age 40-64: NM              0.06       0.97 ***   0.42 *** 2.24 ** 

Age 64-79: M               0.2       0.23 
  

Age 64-79: NM              0.83 ***       0.58 *** 1.67 ** 2.13 ** 

Age 80+: M                22.96   2.07 * 
  

Age 80+: NM               22.63   2.16 *   14.56    1.54 * 

Auto: M                       
 

    0.41 ** 
  

Auto: NM                      
 

      0.75 *** 
  

     

𝜌𝐶
2   0.03 0.06 0.02     0.03 

AIC                           26609.87 7418.73 4623.53 10689.72 

Log Likelihood               -13282.94 -3685.37 -2301.76 -5334.86 

Num. obs.                     15936     4229    3764     9482 

***p<0.001, **p<0.01, and *p<0.05. M represents “mandatory” DAP and NM 

represents “non-mandatory” DAP. 
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4.4 Configuring ActivitySim for Wheelchair Users 

The findings from the NHTS analysis show how wheelchair users behave differently in 

their daily travel patterns, and the DAP choice utility coefficients can be directly applied to 

ActivitySim to create specific plans for a synthetic population. The construction of the synthetic 

population will be described further in this section.  

It is worth mentioning at this stage in the report that ActivitySim uses a coordinated plans 

model, or coordinated daily activity pattern (CDAP). This element of the ActivitySim model 

goes beyond the individual’s DAP choice and models a coordinated activity pattern choice based 

on the daily activities of household members. The CDAP model will prioritize each member of a 

household and store the coefficients. Then depending on the DAP choices of each member, the 

model iterates new coefficients for each household member. For example, if a child is a pre-

school age child, one parent will have a higher coefficient to stay home in the next iteration. 

Similarly, it is reasonable to expect that sharing a household with a wheelchair user might 

influence the choice of activity pattern for other household members. This influence could work 

in either direction: Another household member could conduct fewer out-of-home social 

activities; they might also conduct more maintenance or escorting activities to support a 

wheelchair-using household member. For this reason, both individuals who use a wheelchair and 

their household members may change their DAP when the wheelchair coefficient is considered 

in the DAP model. 

To configure ActivitySim to account for wheelchair users and their household members 

in a coordinated effort and to understand their change in travel behavior, we designed a 

comparison between a base scenario (“Before”) – where wheelchair use status is irrelevant – and 

a wheelchair test scenario (“After”) where wheelchair users make DAP choices based on the 

wheelchair use coefficients found in Table 4-2 and repeated for convenience in Table 4-3. These 

coefficients are applied to the CDAP model in ActivitySim and rely on a condition of wheelchair 

status and person type, which can be found as person attributes in the synthetic population. With 

both scenarios, each person’s behavior can be evaluated to see if wheelchair use has any effect 

on one’s DAP; these results are discussed below. 

 



 56 

 

Table 4-3 ActivitySim DAP Choice Coefficients 

Person Condition Mandatory Non-Mandatory Home 

Full-time worker and 

uses wheelchair  

-1.87 -0.63 0 

Part-time worker and 

uses wheelchair  

-3.38 -1.86 0 

Non-worker and uses 

wheelchair  

- -0.72 0 

Retired and uses 

wheelchair  

- -1.24 0 

 

For ActivitySim to understand which individuals use wheelchairs, it was necessary to 

include a wheelchair use variable in the synthetic population. The synthetic population uses ACS 

PUMS data as a seed table, as described in Chapter 3; this table contains a “disability” variable, 

but not a specific wheelchair use variable. Disability, in this case, accounts specifically for 

ambulatory disabilities. Differently from the ACS, the NHTS data contains a “travel limiting” 

disability variable and specifies which, if any, medical devices are used (i.e., wheelchairs). Using 

the NHTS data, it is clear that 17.6 percent of those with a disability used a wheelchair. Using 

NHTS data, we estimated a binary logit regression model where the latent probability for 

wheelchair use is defined in Equation 3. 

𝑊ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟 = −2.59 + 0.014 ∗ 𝑎𝑔𝑒 (3) 

The regression model enabled us to assign a probability of using a wheelchair for each 

person in the synthetic population, and then randomly identify synthetic individuals who use a 

wheelchair. Of the total synthetic population, those using a wheelchair consisted of 0.8 percent 

of the total population and had an appropriate distribution of age, accurate to the NHTS analysis.  

Table 4-4 shows a summary of the population of wheelchair users from the NHTS data, 

and Table 4-5 displays a summary of the population of wheelchair users from the synthetic 

population. We see that ActivitySim will slightly overrepresent wheelchair users in “Full-Time 

Workers” and “Non-Workers” and largely underrepresent them in the “Retired” person type. 

Note that while the NHTS considers national distribution, the synthetic population only 
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represents the Salt Lake City metropolitan area and such differences should be noted. The age 

variable is included to show that the average age within each person type is consistent with the 

NHTS data. 

Table 4-4 NHTS Wheelchair User Population Summary 

Person Type Count Average Age Percent 

Full-Time Worker 27 52.0 4.7 

Non-Worker 112 50.7 19.5 

Part-Time Worker 18 58.4 3.1 

Retired 411 75.6 71.7 

Driving Age Student 3 16.3 0.5 

Non-Driving Student 2 14.0 0.3 

 

Table 4-5 Synthetic Wheelchair Population Summary 

Person Type Count Average Age Percent 

Full-Time Worker 2,039 52.9 9.9 

Non-Worker 6,551 51.6 31.8 

Part-Time Worker 987 54.2 4.8 

Retired 10,070 79.0 48.9 

Driving Age Student 47 16.6 0.2 

Non-Driving Student 206 11.2 1.0 

University 631 46.3 3.1 

Pre School 67 5 0.3 

 

4.5 DAP Analysis 

The primary focus of the research at this stage is to measure the impact of wheelchair 

status on ActivitySim’s selection of daily plans for our given synthetic population. Given a 

“Before” scenario in ActivitySim of the Salt Lake Area and ignoring the newly added wheelchair 

status in the synthetic population, ActivitySim predicted a DAP for each individual. In a second, 

“After” scenario, ActivitySim again predicted a DAP for each person, this time considering the 

wheelchair use status of each individual in the population. We hypothesized that those with 

wheelchairs and those in the same households as individuals with wheelchairs would change 

their DAP because of the negative utility scores applied to the “mandatory” and “non-

mandatory” DAP alternatives, and the rest of the population would be unaffected. The DAP of 
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those within the same household of a wheelchair user may change because of the coordinated 

nature of household DAP in ActivitySim. Table 4-6 shows the change in DAP among those with 

wheelchairs, in the same household as one with a wheelchair, and with neither a wheelchair nor 

in the same household. The table contains both total volumes and percentages; the value of 

percent is by total volume in the group, for example, 16.4 percent of Wheelchair Users chose a 

“home” pattern in both the “Before” scenario and in the “After” scenario. The latter group is 

rightly unaffected by the wheelchair implementation in the simulation (with the exception of a 

few changes attributable to randomness) and does not include a percentage breakdown. 

Primarily, DAP remain the same for most individuals, as shown in the diagonal. However, there 

is a large volume of wheelchair users and their household members that stay home, particularly 

from “non-mandatory” DAP. This finding is consistent with our hypothesis. A more detailed 

discussion of each group is included in sections 4.5.1 and 4.5.2. 

Table 4-6 Comparison of DAP Before and After 

Persons DAP 

Before 

DAP After 

H M N 

Wheelchair Users H 3,369 (16.4%) 20 (0.1%) 459 (2.2%) 

M 932 (4.5%) 1,642 (8.0%) 308 (1.5%) 

NM 3,584 (17.4%) 23 (0.1%) 10,261 (49.8%) 

Household Members H 4,511 (12.3%) 213(0.6%) 631 (1.7%) 

M 759 (2.1%) 15,409 (42.1%) 301 (0.8%) 

NM 1,235 (3.4%) 415 (1.1%) 13,119 (35.9%) 

Not Affected H 309,965 (12.8%) 2 (0.0%) 0 (0.0%) 

M 2 (0.0%) 1,460,582 (60.1%) 0 (0.0%) 

NM 0 (0.0%) 2 (0.0%) 659,258 (27.1%) 

 

The analysis of DAP comparison will focus on only the two groups: wheelchair users and 

their household members. Within each of these sections, there are those that did change their 

DAP and those that did not change. The analysis aims to further uncover the choices of each 

group. A summary of these groups is shown in Table 4-7. 
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Table 4-7 Analysis Group Description and Summary 

Description Total 

Wheelchair user who changes DAP 5,326 

Wheelchair user who does not change DAP 15,272 

Household member who changes DAP 3,554 

Household member who does not change DAP 33,039 

 

4.5.1 Wheelchair Users 

Of the 20,598 persons in the scenario who use a wheelchair, there is a notable shift 

toward a “home” DAP and away from “non-mandatory” DAP, as shown in Table 4-6 and Figure 

4-1. Unfortunately, it is impossible to validate the volume of such a shift of wheelchair users in 

DAP, but the shift is consistent with the change to the utility coefficient. The primary metric of 

concern is the percent of wheelchair users that changes their DAP; Table 4-6 shows that 21.9 

percent (4.5 percent + 17.4 percent) of wheelchair users that did not have a “home” DAP change 

to a “home” pattern. We notice that 74.2 percent (16.4 percent “home” + 8.0 percent 

“mandatory” + 49.8 percent “non-mandatory”) of all wheelchair users did not change their DAP, 

and 49.8 percent of all wheelchair users kept their “non-mandatory” DAP. We also see that 38.3 

percent (16.4 percent “home” + 4.5 percent “mandatory” + 17.4 percent “non-mandatory”) of all 

wheelchair users selected a “home” DAP in contrast to the 18.7 percent (16.4 percent + 0.1 

percent + 2.2 percent) that selected “home” DAP before they were assigned a wheelchair.  

Figure 4-1 shows the choice of DAP for individuals who change their DAP in the 

wheelchair test scenario. The left-hand histogram shows their DAP choice before any wheelchair 

choice coefficients were applied to ActivitySim, and the right-hand histogram shows their DAP 

choice after the choice coefficients were applied. There is an obvious trend of “home” DAP 

selected by individuals who change, and the volume increases with age. This is clear evidence 

that wheelchair use has an effect on DAP, according to our model. 
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Figure 4-1 Histogram of wheelchair users who change DAP. 

 

4.5.2 Household Members 

The research also investigates the changes of those living in the same household as 

wheelchair users, as ActivitySim models a coordinated choice pattern at the household level. For 

the most part, household members maintain their original DAP, as shown in Table 4-6; those 

who did consist of 90.3 percent (12.3 percent “home” + 42.1 percent “mandatory” + 35.9 percent 

“non-mandatory”) of the household members. The volume of household members that changed 

their DAP to a “home” DAP was 5.5 percent (2.1 percent “mandatory” + 3.4 percent “non-

mandatory”). These results show that the use of a wheelchair has an effect on household 

members, although the effect is relatively small.  
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4.6 Summary 

Existing literature has shown a variance in conclusions in explaining mobility for 

individuals with disabilities and is limited in representing a quantitative analysis of how 

wheelchair use affects one’s choice of activities. An objective of this research and the goal of 

this chapter is to understand the effect of wheelchair use on one’s choice of DAP. This 

evaluation consisted of a study of wheelchair users in the 2017 NHTS and an analysis of their 

daily activity patterns, an estimation model and the derivation of DAP choice coefficients, the 

implementation of these coefficients into the ActivitySim model, and an analysis of their change 

in DAP when compared to the base scenario. 

In considering the analysis of the DAP of individuals from the 2017 NHTS, the results 

from the estimation model analysis showed that using a wheelchair decreases (through a negative 

utility coefficient) the likelihood of an individual to choose a “non-mandatory” DAP and even 

more strongly the likelihood of choosing a “mandatory” DAP. Implementing these utility 

coefficients into ActivitySim, the findings show many wheelchair users chose to stay home, and 

consequently some of their household members also chose not to leave the home. We noticed 

that more wheelchair users stayed home if their base scenario DAP was “non-mandatory” rather 

than “mandatory.” An important note is that the change in DAP, at this stage, is not reflected by 

a potentially better transportation service. In other words, users may be more likely to choose a 

different daily plan if transportation were more accessible, and this is neither represented in our 

estimation model nor ActivitySim simulation.  

While the findings of this chapter are significant, there are some limitations worth 

mentioning. The NHTS is a fundamental data set for examining travel behavior of individuals 

across the United States, but it does have several known limitations. The sampling strategy, 

though improved from previous versions of the NHTS, does not adequately capture the travel 

behavior of young adults and university students (Xueming, 2012). For this reason, these person 

types were excluded from the analysis of DAP. Wheelchair use is perhaps not as common among 

young adults as it is among the aging and elderly, but younger adults are perhaps more likely to 

take advantage of the mobility-as-a-service systems that motivate this study. This project also 

used the NHTS across the whole country instead of accounting for geographical differences 
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(though we did filter out respondents not residing in medium-large urban areas). This was 

decided as to accumulate enough respondents who use wheelchairs to actually estimate the 

models. Finally, the NHTS is also a self-reported survey with no supplemental data elements. 

Modern household travel surveys typically include some elements that are collected passively 

through smartphone applications or GPS devices; these additional methods provide assurance 

that the daily patterns reported in the survey are valid and complete. 

On the foundation of Figure 1-1, this chapter provided the context of understanding the 

effect of wheelchair use on DAP output from ActivitySim and provides the framework to apply 

those DAP to the BEAM simulation. 
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CHAPTER 5 SIMULATION OF WHEELCHAIR-ACCESSIBLE VEHICLES 

5.1 Overview 

This chapter aims to apply the findings of Chapter 4 to model a WAV system. With the 

understanding of such behavior reported in the previous chapter, the findings in this chapter add 

a layer of application by seeking to understand the performance of WAVs in a microsimulation 

of these wheelchair users and their households using BEAM. BEAM was primarily selected for 

its ability to update the mode choice of each individual over multiple iterations based on the 

modes and travel times available to each person. An activity-based model uses average travel 

times by period and mode to evaluate mode choices. In the case of small, on-demand 

transportation offerings like a WAV system, these average times are highly variable and 

unrealistic: The amount of time spent waiting for an on-demand vehicle is highly dependent on 

demand for that vehicle in other parts of the region. A microsimulation can help to determine 

travel times and vehicle availability in a more realistic way. This chapter describes the 

implementation of the WAV simulation scenarios in the BEAM agent-based modeling software, 

focusing on the performance of the vehicles. 

BEAM stands for Behavior, Energy, Autonomy, and Mobility and is an agent-based 

microsimulation model developed at Lawrence Berkeley National Laboratory and the UC 

Berkeley Institute for Transportation Studies. BEAM extends the MATSim modeling framework 

by improving the performance of the multi-agent simulation on large networks as well as 

standardizing several features that are add-ons in standard MATSim. In this research, BEAM 

was selected for its integrated ride-hail algorithms, as the focus of this project is to evaluate the 

performance of WAVs in an on-demand, ride-hail environment.  

This chapter first describes the input structure of BEAM including the population activity 

plans, transportation services, and the BEAM simulation code. After a discussion on data inputs 

for BEAM, this chapter includes an analysis of the WAV simulation including the construction 

and results of the scenarios. The scenarios are prepared to evaluate the performance of the 

WAVs in the Salt Lake area by measuring the average wait time for wheelchair users and the 
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general utilization statistics of these vehicles. This chapter concludes with the summary of this 

performance analysis.  

5.2 Inputs to BEAM 

A BEAM scenario includes three distinct elements that function together: 

• Daily activity patterns developed from ActivitySim outputs 

• Transportation services including highway infrastructure and transit, and taxi / ride- 

hailing services 

• BEAM simulation code and scenario construction 

These elements are discussed in the following sections. 

5.2.1 Population Activity Plans 

As the primary input into BEAM, a population activity plans file consists of each activity 

to which an agent will travel during the day and their chosen mode of transport to each activity. 

BEAM simulates these plans, and then updates the plans using adaptive algorithms that perturb 

the initially chosen routes, departure times, and mode choices to optimize their overall utility. 

This innovative selection of mode choice is why BEAM was chosen as the simulation tool and 

provides insight into how people might choose novel transportation modes.  However, while 

BEAM innovates the mode choice, the selection of activities remains constant. These population 

activity plans are generated from ActivitySim’s output. 

As part of ActivitySim’s output, a trips file is generated. This file contains an origin TAZ 

and a destination TAZ, a departure hour, a trip purpose, and a travel mode for each trip. While all 

this information is useful, it has two main issues: First, the organization of trips is not recognized 

by BEAM, as BEAM reads activities; second, the data lacks specific coordinates representing 

facilities and households. For these reasons, we converted the ActivitySim output into BEAM 

input by creating activities from the trips and randomly selecting specific coordinates within 

each origin and destination TAZ for facilities and homes. 
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The selection of random coordinates for both facilities and homes was necessary for 

BEAM to simulate agents’ plans. Coordinate information comes from the AGRC. Household 

coordinate information is assigned by number of households within a TAZ and then randomly 

scattered within the given TAZ. Using a similar randomization technique and information from 

AGRC, we also assigned coordinates to each facility in the simulation. These coordinate tables, 

for both households and facilities, were used to randomly assign coordinates that belonged 

within TAZ from the ActivitySim trips file. 

5.2.2 Transportation Services 

BEAM requires a description of the transportation services available for the agents to use 

when traveling between activities. The infrastructure includes a highway network, a transit 

schedule, and a unique taxi specification—where individuals with wheelchairs are excluded from 

inaccessible taxis. 

A highway network in BEAM consists of nodes where activities occur, connected by 

links. The links on the network need to be composed of attributes relating to capacity, free flow 

speed, functional classification, drivetime, and direction, whether it is a one-way street or not, 

etc. These attributes allow the model to simulate more accurately the real-life road environment 

of the Salt Lake Area. 

A detailed road network for the state of Utah was obtained from OpenStreetMap via the 

GEOFABRIK download service (OpenStreetMap, 2020) and manipulated using the Osmosis 

command-line tool (Osmosis, 2021). The area of interest was then extracted from this file using a 

bounding box from North Ogden to Santaquin as shown in Figure 5-1, and the road-related 

streets were then filtered using Osmosis, so that only certain highway links remained. A 

depiction of the final roadway network focused on Salt Lake County is given in Figure 5-2. 

A common format for public transportation schedules and geographic information is the 

General Transit Feed Specification (GTFS). This format allows public agencies to publish their 

data in a format digestible by many software packages. We obtained GTFS data representing 

UTA as of April 2019 from the open mobility data feed (UTA, 2021). BEAM maps the GTFS 
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data onto the OSM-based highway network, allowing simulated agents to use highway and 

transit services interchangeably. 

BEAM already has an advanced infrastructure for simulating on-demand ride-hail 

vehicles. However, it lacks the functionality of wheelchair accessibility. As part of developing 

the infrastructure for BEAM to simulate WAVs on demand for a population of wheelchair users, 

it was necessary to extend BEAM to recognize both WAVs and wheelchair users.  

The first step in creating WAVs with all-inclusive functionalities was to define WAV as a 

new vehicle type in BEAM and add a new “accessibility” attribute to the vehicles in the ride-hail 

fleet. In addition to defining WAVs and their distinction from ride-hail vehicles, it was necessary 

to specify wheelchair users and their distinction from the general population. As such, 

wheelchair users were given a wheelchair status attribute and their user identifications included a 

“wc” in the string ID. Using a string instead of a person’s attribute proved more efficient to 

highlight wheelchair users in filtering their ride-hail requests. 

With both wheelchair users and WAVs identifiable in BEAM, we implemented a filtering 

method that excluded wheelchair users from general ride-hail cars, as they are inaccessible to 

wheelchair users. The WAVs on the other hand were accessible to both wheelchair users and the 

general population. To allocate users to vehicles, BEAM uses a vehicle centric matching 

algorithm and a pooling algorithm to assign requests to available (and now accessible) vehicles 

nearby and heading in similar directions as the request. BEAM also uses a default pooling that is 

request centric and assigns a request to a vehicle if the first assignment failed. To successfully 

exclude wheelchair users from all inaccessible ride-hail vehicles, it was necessary to write logic 

in both methods: the vehicle centric and pooling classes and the request-centric backup pooling 

class. 
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Figure 5-1 Road network of the Greater Salt Lake Area. 
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Figure 5-2 Road network of Salt Lake county; zoomed in for detail. 
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5.2.3 BEAM Simulation Code 

This section will highlight the changes and improvements to create a BEAM scenario 

with the previously mentioned input data including validation and calibration, mode choice 

innovation, and ride-hail fleet information.  

The BEAM simulation in the Salt Lake Scenario is calibrated to the accuracy of the 

population activity plans, as described in Section 5.2.1. At this level of calibration, the modal 

split from BEAM reflects the modal split from ActivitySim, which calibration was described in 

Section 3.3. As the secondary contribution of this research is to evaluate the performance of 

WAVs, the modal split from ActivitySim is acceptable, and mode innovation is only available to 

wheelchair users. 

Mode innovation is the process that BEAM runs to optimize the mode selected by agents 

over the multiple iterations in a scenario. With mode innovation turned off for the general 

population, each of the agents are forced to stay with their original mode selection, given by the 

input population activity plans file. However, as the population of wheelchair users and their 

mode choice behavior are to be evaluated, mode innovation remained “on” for the wheelchair 

user population only, and only 20.0 percent of the population would reevaluate their mode 

selection between iterations. This strategy allows for some wheelchair users to select a different 

mode if they, for example, spent too much time waiting for a WAV in a previous iteration. 

The ride-hail fleet is another input file into BEAM and is a critical component of each 

scenario in this analysis. The ride-hail fleet component contains a unique ID for each vehicle and 

a starting location. The starting location was determined by randomly selecting coordinates of 

nodes in the network and converting the coordinates to the appropriate coordinate system. The 

ride-hail fleet size was a function of the population size and was calculated according to the 

ratios reported by Castiglione et al. (2017), and using the proportions given, a “ride-hail vehicle 

by population” ratio was back calculated. There are roughly 21,000 TNC drivers in San 

Francisco (population 874,926). This means that there is roughly 2.3 percent of a population that 

serves as a driver. As ride-hail volume in general is lower in Salt Lake City compared to San 

Francisco, and for lack of a deeper understanding of the nature of ride-hailing volume in Salt 

Lake City, a value of 2.0 percent was used in calculating ride-hail fleet size. 
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5.3 Analysis of WAV Simulation 

As has been described, the goal of these experiments is to compare how wait times and 

frequency of use change as more WAVs are introduced into the scenarios. While future research 

can provide information as to the optimal fleet size for WAV systems, this analysis is not 

sufficiently calibrated to model mode choice of the Salt Lake Area. Thus, this section will 

discuss the construction of the “WAV” scenarios used to evaluate the performance of WAVs in 

the Salt Lake area. This section will also describe how wait time and frequency of use change as 

more WAVs are introduced into the scenario.  

5.3.1 Scenario Construction 

In this research there are two scenarios that were tested to evaluate the performance of 

WAVs. These scenarios will then be run four times each (a total of eight simulations) with a 

different number of WAVs: 4, 8, 16, and 32, each time simply taken from the input ride-hail fleet 

size (i.e., if the fleet size is 1000, then 32 are WAVs and 968 are general ride-hail vehicles). 

Then wait times and usage statistics were compared among the varying runs of each scenario. 

The two scenarios are structured as follows: 

1. All wheelchair users and their households, roughly 2.5 percent of the population – 

From the synthetic population, there are 20,518 wheelchair users in the Salt Lake 

Area. This scenario includes each wheelchair user and everyone from their 

households. The total population of this scenario is 57,273 from 20,110 households. 

The total number of ride-hail vehicles for this scenario is 1,000 (general vehicles plus 

WAVs) and the wheelchair users represent 36.0 percent of the scenario population 

(20,598 wheelchair users). 

2. Roughly 5.0 percent of the total population, including all of scenario 1 – Of the 

20,110 households of wheelchair users, we randomly selected 20,000 more 

households (excluding 486 randomly selected, duplicate wheelchair users’ 

households) for a total of 39,624 households, a population of 115,346, and 2,500 ride- 

hail vehicles (general vehicles plus WAVs). The wheelchair users represent 17.9 

percent of the scenario population (20,598 wheelchair users). 
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The strategy of selecting the two scenarios in this way was to optimize run time and still 

have a sufficient number of wheelchair users in each scenario. While in both scenarios there is an 

incorrect proportion of wheelchair users to the true population, only the individuals with 

wheelchairs are allowed to change their choice of mode within the simulation; the general 

population does not alter their mode choice between iterations. This way the demand for WAVs 

should remain mostly unaffected by the increase in general population size. Scenario 2 is 

designed to be twice the size of scenario 1 in an effort to see how volumes and wait times would 

change when a larger population is tested and the number of wheelchair users remains constant. 

The purpose of processing multiple runs of each scenario with a larger WAV fleet size is to 

evaluate how wait time changes as more WAVs are introduced into the scenarios. The analysis 

of these runs is explained in the following section. 

5.3.2 Scenario Analysis 

For each scenario, the metrics of analysis include the wait time for WAVs—this refers to 

the average time that wheelchair users spend waiting after their request, the number of WAV 

requests from wheelchair users, the proportion of WAV requests to WAV fleet size, the number 

of wheelchair users that ride in a WAV, the total number of rides in a WAV, the wait time for 

general ride-hail cars, and the total number of rides in general ride-hail cars. The results are 

found in Table 5-1 for Scenario 1 and Table 5-2 for Scenario 2. 

The central finding from these scenarios is the demand increases as WAV fleet size 

increases. The results in both Table 5-1 and Table 5-2 show that as more WAVs are introduced, 

the demand increases linearly; they also show that wait time for wheelchair users remains nearly 

constant across both scenarios. This indicates some kind of relationship among the supply of 

WAVs, the demand of wheelchair users, and the wait time. One hypothesis here is that BEAM 

does not tolerate a wait time above a certain threshold. This would force agents to choose to walk 

or drive instead, but to validate this assumption of wait-time threshold, further research is 

required. 

The other possible explanation for this fixed wait time is that these simulations did not 

simulate through enough iterations. Over various iterations, agents will reselect their mode to 

optimize their utility over the day. The mode choice in each iteration for Scenario 1 with 32 
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WAVs is shown in Figure 5-3; this image adequately reflects the mode choice plots from the 

other scenarios, differing only in “# of mode chosen.” Notice that the only modes that seem to 

change are “car” and “walk,” and ride-hail modes seem to maintain constant volume.  

The analysis of WAV performance from these two scenarios gives insight into the inner 

workings of BEAM and sets a strong foundation for future research in microsimulation of 

micromobility. While these results are informative, they are not final for the purpose of advising 

on optimal fleet size or estimating wait times; further research is required. 

 

Table 5-1 Wait Time and WAV Usage Statistics – Scenario 1 

Metric Number of WAVs 

4 8 16 32 

Average WAV Wait Time 8.1 min 9.3 min 8.3 min 8.3 min 

Number of WAV Requests 19 52 77 209 

Average Number of Request per WAV 4.8 6.5 4.8 6.5 

Number of WC Rides in WAV 13 34 63 178 

Number of Total Rides in WAV 14 36 64 188 

Average General Ride-Hail Wait Time 5.2 min 5.1 min 5.2 min 5.1 min 

Total General Ride-Hail Rides 3,145 3,162 3,139 3,199 

 

Table 5-2 Wait Time and WAV Usage Statistics – Scenario 2 

Metric Number of WAVs 

4 8 16 32 

Average WAV Wait Time 7.6 min 7.1 min 7.8 min 7.7 min 

Number of WAV Requests 31 43 84 146 

Average Number of Request per WAV 7.8 5.3 5.3 4.5 

Number of WC Rides in WAV 18 28 61 115 

Number of Total Rides in WAV 20 31 64 124 

Average General Ride-Hail Wait Time 10.1 min 11.4 min 10.8 min 10.2 min 

Total General Ride-Hail Rides 2,646 3,101 2,669 2,579 

 



 73 

 

Figure 5-3 Mode choice over iterations from Scenario 1 with 32 WAVs. 

5.4 Summary 

With conclusive findings from Chapter 4 on the behavior of individuals with wheelchairs, 

this chapter models a WAV system, highlighting the evaluation of vehicle performance in a 

microsimulation of WAVs in BEAM. The microsimulation tool BEAM was used for its 

comprehensive algorithms in simulating ride-hail and pooling scenarios.  

To implement BEAM to simulate WAVs effectively in Salt Lake City, some manual 

restructuring was required. Referring to Figure 1-1, BEAM simulates the activity plans, DAP, of 

a population including the addition of wheelchair users, and these plans came from the output of 

ActivitySim. BEAM also required the adaptation of a new transportation network and system to 
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properly simulate the Salt Lake Area. Lastly, we configured BEAM to recognize both wheelchair 

users and WAVs and allocate them accordingly. 

After simulating two scenarios of different wheelchair saturation levels, the findings 

show that request volume from wheelchair users increases linearly with the increase of WAV 

fleet size. We were surprised that with increased demand, the wait time for WAVs remained 

constant. This could be due to an insufficient number of iterations or to a threshold within 

BEAM of agents’ willingness to wait.  

BEAM is a powerful microsimulation tool with a rigorous infrastructure for modeling 

ride-hail scenarios. However, there are some limitations; for example, BEAM restricts the 

activity choice of all agents to the activities assigned in the input file. Ideally, in a system that 

improved mobility for a population of individuals with wheelchairs, their activity patterns would 

change. Despite the limitations, these efforts show an application of the behavior of individuals 

with wheelchairs in a WAV scenario. The findings also give further insight into BEAM 

concerning the relationship among the supply of ride-hail vehicles, demand, and wait time. 



 75 

CHAPTER 6 CONCLUSIONS 

6.1 Contributions 

Individuals with mobility limitations are an important part of the transportation system, 

though they are often given secondary consideration, if any, from planners and service providers. 

Existing literature has come to a variety of conclusions in considering the travel behavior, mode 

choice, trip frequency, and activity patterns of individuals with disabilities. The need to further 

understand and quantify their travel patterns grows as modern mobility services become more 

common such as ride hailing, on-demand microtransit, and other services, which are often 

inaccessible or highly inconvenient to individuals with wheelchairs. The literature also showed 

efforts made by public and private organizations to improve transportation for those with 

wheelchairs, and this research provided quantitative evidence to explain the travel patterns of 

individuals with wheelchairs. 

Motivated by the 2018 efforts of UTA to launch a wheelchair-accessible ride-hail service, 

this report made two primary contributions to the existing research surrounding mobility for 

individuals with disabilities and the simulation of micromobility scenarios. First, this report 

demonstrated understanding of the effect of wheelchair use on one’s choice of DAP. 

Consequently, the report presented a thorough analysis of the travel behavior of individuals with 

wheelchairs from the 2017 NHTS with the purpose of modeling their DAP and measuring the 

effect of wheelchair use on their daily patterns, as shown in the red shapes of Figure 6-1. Second, 

this research applied the understanding of DAP choice by modeling a WAV system. As such, 

this report analyzes the performance of on-demand WAVs in a microsimulation in BEAM by 

simulating the plans of wheelchair users from ActivitySim, as shown by the blue shapes in 

Figure 6-1. 

Of the findings regarding the effect of wheelchair use on DAP choice, the analysis of the 

2017 NHTS shows that there is a significant and negative utility for all person types who use a 

wheelchair. These negative utility coefficients are informative as to their travel patterns and are 

useful as input into the ActivitySim model. Two scenarios were run in ActivitySim as part of this 

research to compare the effect of wheelchair use against a base scenario. From the simulation of 
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the synthetic population in ActivitySim, the findings were conclusive in that of the wheelchair 

users who changed their DAP according to the negative choice coefficients. The large majority 

chose a “home” daily activity pattern, primarily among the elderly. The analysis shows the 

significant effect of wheelchair use in one’s choice of DAP. 

By understanding one’s DAP, this research applied this understanding of wheelchair 

users to model a WAV system. In this simulation, the performance of these vehicles was 

evaluated as more vehicles were introduced into the scenario. The findings are conclusive in that 

demand increases linearly with fleet size and can maintain higher demands under a wait-time 

threshold. This is informative as to understand on a deeper level how the BEAM simulation tool 

approaches ride hailing and lays a framework for further research in BEAM. 

 

 

Figure 6-1 Overview of research and organization of report. 
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6.2 Recommendations 

The contributions of this research provide adequate information on the effect of the use of 

wheelchairs on daily activity plans and on the performance of on-demand WAVs in Salt Lake 

City. In this process, these efforts produced a calibrated ActivitySim scenario of Salt Lake City 

and a working scenario of BEAM. These tools, with further calibration efforts, can be used to 

simulate modern and emerging micromobility scenarios in the Salt Lake area.   

This study leaves a few questions for future study. For example, in another BEAM 

scenario of WAVs and wheelchair users, how might wait time change if demand is held 

constant? This study would require a deeper understanding of how BEAM manages the demand 

with the supply of ride-hail vehicles. A future study like this might benefit UTA in looking to 

optimize a potential fleet size.  

One future step to improve the study of the behavior of individuals with wheelchairs 

concerns additional models within ActivitySim. The DAP model is only the first of many choice 

models in the ActivitySim framework. Subsequent choices include “mandatory” and 

discretionary location choices, tour and trip mode choices, and incidental activity generation. It is 

likely that wheelchair use influences all of these travel behaviors, but we could consider only the 

DAP choice in this research. Further exploration of the role that wheelchair use – and other 

disabilities – plays in travel behavior choices is essential to developing policies and services that 

will provide equitable mobility for this population. 

ActivitySim was used in this research project because the current WFRC / MAG travel 

demand model was not sufficiently sensitive to the behavioral issues at play, and could not 

generate coherent daily activity patterns to simulate in BEAM. A fully-calibrated and specified 

activity-based model would have provided more realistic inputs to the microsimulation as well as 

simplified some of the scenario construction tasks described in Chapter 3. 

Another future step of research revolves around the activity innovation within BEAM. In 

this study, activity selection was held constant as to only analyze mode shift. However, in reality 

when a new mode becomes available, one’s activities would also change. This research would 

require more simulation within the ActivitySim model to measure how activities change with 
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new availability to accessible travel. Perhaps an iterative study from the mode change in BEAM 

to then inform ActivitySim’s activity models would be necessary. 
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APPENDIX A – THE SEGMENTATION MODEL ANALYSIS 

ActivitySim classifies persons into seven segments, as mentioned in Chapter 4, however, 

only four of these person types are considered in the research. The analysis presented in this 

Appendix shows the consideration of a fifth person type: “wheelchair user.” Using the results 

from the NHTS model, a principal question in responding to its accuracy is whether individuals 

who use wheelchairs are sufficiently distinct in their behavior to warrant independent 

segmentation. The estimation analysis mentioned in the report considers wheelchair use as a 

significant variable in the other person-type segments. By also considering wheelchair users as a 

segmented person type, we can evaluate the difference in accuracy between the two models: the 

model that considers wheelchair use as described in Section 4.3 and a model that considers 

wheelchair users as a segmented person type. Table A.1 shows the results from both models with 

the Wheelchair User on the far right representing the estimates from the segmented person-type 

model. The sign and magnitude of the coefficients are consistent with those of the existing 

person types where wheelchair is a variable. 

To determine if the activity pattern choices of wheelchair users are sufficiently distinct to 

warrant a distinct population segment, we can compare the predictive accuracy of each model 

pair for all wheelchair users. 

That is, each wheelchair user 𝑖 in the estimation data set has two utility estimates: one for 

the person type segment 𝑈𝑖𝑘 from which the individual would belong, and one from a segmented 

wheelchair user person type 𝑈𝑖𝑊𝐶. The expected probability of this individual’s chosen 

alternative plan j* is represented mathematically in Equation A-1. 

𝑃𝑖𝑗∗ =
𝑒𝑈𝑖𝑗∗

∑ 𝑒𝑈𝑖𝑗𝑗∈𝑀,𝑁𝑀,𝐻

 
(A-1) 

A perfect model would give a probability of 1 to the chosen alternative and 0 to all other 

alternatives. While the estimates in Table A.1 are far from perfect, it is informative to consider 

the average difference in expected probabilities between the two models. After finding both 

utility estimates for all wheelchair users in the data set, the average difference would show if one 
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model was preferred to the other. Equation A-2 shows the average difference in expected 

probabilities between the wheelchair user segment model 𝑃𝑖𝑊𝐶 and the person-type segment 

model 𝑃𝑖𝑘 where wheelchair use is a variable in the model (𝑁𝑘 is the number of individuals in the 

relevant person segment). 

∆𝑘=
∑ 𝑃𝑖𝑊𝐶 − 𝑃𝑖𝑘
𝑁𝑘
𝑖=1

𝑁𝑘
 

(A-2) 

Given the direction of Equation A-2, a positive value for ∆𝑘 indicates that the wheelchair 

segment model gives a higher expected probability than the applicable person segment model. 

The averages and standard deviations of these differences are shown in Table A.2 for all 

wheelchair users of each person type, as well as the results of a t-test where the null hypothesis 

states no difference between the two models. Overall, there is no significant difference between 

the two approaches. 
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Table A.1 Model Estimate Results  
Full-Time 

Worker 

Part-Time 

Worker 

Non-

Worker 

Retired Wheelchair 

User 

(Intercept): M                2.11 *** 1.49 *** 
  

-2.40 * 

(Intercept): NM               1.13 ***   -0.04 0.59 ***    -1.17         0.34 

Wheelchair Use: M      -1.87 *** -3.38 *** 
   

Wheelchair Use: NM     -0.63 -1.90 *** -0.72 ***    -1.26 *** 
 

Works at home: M                -1.57 *** -1.38 *** 
  

-5.62 * 

Works at home: NM                -0.07     0.1 
  

   2.36 ** 

Male: M                        -0.01   -0.05 
  

        1.56 

Male: NM                       -0.16 *   -0.24 * -0.28 ***     0.24 ***  0.45 * 

Bachelor degree: M                0.38 ***    0.27 * 
   

Bachelor degree: NM               0.68 *** 0.53 ***  0.48 ***     0.35 *** 
 

Income $25k - $50k: M     -0.09    0.01 
  

       -0.17 

Income $25k - $50k: NM  -0.38 *    0.28  -0.06    -0.09 -0.56 * 

Income $50k - $100k: M    -0.23   -0.38 * 
  

       -2.44 

Income $50k - $100k: NM  -0.34 *   -0.01  -0.06     0.11        -0.15 

Income > 100,000: M            -0.27   -0.40 * 
  

      3.78 *** 

Income > 100,000: NM           -0.27   -0.06  -0.04     0.04        -0.31 

Age 40-64: M                0.02 0.54 *** 
  

  -4.16 ** 

Age 40-64: NM               0.06 0.97 ***  0.42 *** 2.24 **        -0.41 

Age 64-79: M                0.2    0.23 
  

       -0.71 

Age 64-79: NM             0.83 *** 0.58 *** 1.67 ** 2.13 ** 0.14 

Age 80+: M                22.96    2.07 * 
  

      -15.45 

Age 80+: NM               22.63    2.16 *  14.56    1.54 *         -0.4 

Auto: M                       
 

   0.41 ** 
   

Auto: NM                      
 

0.75 *** 
   

Retired: M                    
    

-5.31 * 

Retired: NM                   
    

-0.54 * 

Fulltime Work: M                   
    

     4.45 *** 

Fulltime Work: NM                  
    

       -1.32 
      

Rho2 0.03 0.06 0.02 0.03 0.14 

AIC                          26609.87 7418.73 4623.53 10689.72 833.13 

Log Likelihood               -13282.94 -3685.37 -2301.76 -5334.86 -394.57 

Num. obs.                      15936     4229    3764     9482         573 

***p<0.001, **p<0.01, and *p<0.05. M represents “mandatory” DAP and NM represents 

“non-mandatory” DAP. 
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Table A.2: Predictive Model Accuracy 

Person Segment Coun

t 

∆𝒌 Std. 

Deviation 

t-

statistic 

p-

value 

Full-time 27 0.147

7 

0.3

4 

2.2

5 

0.01

6 

Part-time 18 0.040

3 

0.3

6 

0.4

8 

0.32

0 

Non-worker 112 -

0.0155 

0.1

6 

-

1.05 

0.14

8 

Retired 411 -

0.0068 

0.1

0 

-

1.39 

0.08

2 

Total 568 0.000

4 

0.1

5 

0.0

6 

0.47

8 

 

There is apparent variation in the models’ predictive power at the person segment level. 

For individuals who use wheelchairs and work full-time, the wheelchair segment model on 

average gives an expected probability of the chosen alternative 0.148 higher than the full-time 

worker model controlling for wheelchair use (on a scale of 0 to 1). This result is significant at the 

95.0 percent confidence level. For retired and non-working individuals who use wheelchairs, the 

respective segment models are only slightly more predictive of the chosen alternative, but the 

difference is not significant.  

It is curious why the wheelchair segment model would be more accurate for full-time 

workers than for the other person types, when these individuals make up only about 5.0 percent 

of the population who use wheelchairs. One expectation would be that the wheelchair segment 

model would be least accurate for this group, as its estimated coefficients could be driven by the 

behavior of non-working and retired individuals. On the other hand, it is also reasonable to 

imagine that wheelchair users who are also full-time workers exhibit choice behavior that is 
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more similar to other wheelchair users than to full-time workers who do not use wheelchairs. It is 

also possible that there is another missing variable or interaction of an existing variable with 

wheelchair status that would improve the predictive accuracy of the full-time worker segment 

model for wheelchair users.  

To summarize, the activity pattern choice of wheelchair users who work full-time would 

be more accurately represented with an additional person-type segment including all wheelchair 

users. The choices of wheelchair users in other person-type segments, by contrast, are not more 

accurately predicted by the standard person-type segmentation when including wheelchair status 

as a variable in the choice utility function. There may even be some suggestive evidence that a 

distinct wheelchair user segment is less predictive of the choices in some segments. With this 

evidence, it is reasonable to maintain the existing person-type segmentation in the analysis of 

DAP in ActivitySim, but to add a variable that adjusts the utility of choosing a DAP if the 

individual uses a wheelchair. 

 

 


